
i

AD-787 677

DATACOMPUTER PROJECT

Computer Corporation of America

Prepared for:

Defense Supply Service
Advanced Research Projects Agency

30 June 1974

DISTRIBUTED BY:

KKr
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

|
t

I
I
[\
r \»
\

[
[
i
I
[
t
[
1
1
I
1
I

Computer Corporation of America
575 Technology Square

Cambridge, Massachusetts 02139

DATACOMPUTER PROJECT

SEMI-ANNUAL TECHNICAL REPORT

March 13, 197^ to June 30, 197^

This research was supported by *he Defense Advanced Research

Projects Agency of the Department of Defense and was

monitored by the U.S. Army Research Office, Defense Supply

Service—Washington under Contract No. MDA903-7i*-C-0225. The

views and conclusions contained in this document are those of

the authors and should not be interpreted as necessarily

representing the official policies, either expressed or

implied, of the Defense Advanced Research Projects Agency

or the U.S. Government.

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE

IJ S Department of Commerce
Springfield VA 22151

\d/

I
I
I
I
i

I
[

[
i:

i
i
i

Abstract

The datacomputer system is being designed as a large-scale

data storage utility to be accessed from remote computers on

the Arpanet and, potentially, on other networks. The

development is phased, with each successive release of the

system offering increased capabilities to users. During

the present reporting period, the second major release of

the system became operational. This release, while still

primitive in many respects, is beginning to provide experience

with actual applications and user programs.

-i-i>

Table of Contents

t
I
I

I

Page

Abstract i

1. Overview 1

1.1 Review of Basic Concepts 1

1.2 Status of Project 3

2. Software Implementation 7

2.1 Request Handler 7

2.2 Services 9

3. Network Services 10

3.1 User Programs 10

3.2 User Statistics 11

Appendix: Working Paper No. 9, "Datacomputer Version

0/10 User Manual", June 1, 197*» 13

Figures

1. Logical View of Datacomputer 2

2. Hardware Overview of System. %
3. Hardware Block Diagram - CCA Installation 5

-ii-

/

I

,; l

• i

i

1. Overview

1.1 Review of Basic Concepts

The goal of the project continues to be the development of

a shared, large-scale data storage utility, to serve the

needs of the Arpanet community.

The system under development will make it possible to store

within the network such files as the ETAC Weather File or

the NMRO Seismic Data File, which are measured in hundreds

of billions of bits, and to make arbitrarily selected parts

of these files available within seconds to sites requesting

the information. The system is also intended to be used as

a centralized facility for archiving data, for sharing data

among the various network hosts, and for providing inexpensive

on line storage to sites which need to supplement their local

capability.

Logically, the system can be viewed as a closed box which

(is shared by multiple external processors, and which is
_ ._ ... ■■-.- •• t 1-. m

accessed in a standard notation, "datalanguage" (see Fig. 1).

The processors can request the system to store information^

change information already stored in the system, and retrieve

J j stored information. To cause the datacomputer to take action,

the external processor sends a "request" expressed in data-

language to the datacomputer, which then performs the desired

data operations.

From the user:s point of view the datacomputer is a remotely-

located utility, accessed by telecommunications, It would be

impractical to use such a utility if, whenever the user wanted

to access or change any portion of his file, the entire file

had to be transmitted to him. Accordingly, data management

functions (information retrieval, file maintenance, backup,

/9--1-

I
I
I
I
I

DATACOMPUTER

/PROCESSORS

Figure 1. Logical View of Datacomputer

f} -2-

access security, creation of direct and inverse files, main-

tenance of file directories, etc.) are performed by the data-

computer system itself. The user sends a '"request", which

causes the proper functions to be executed at the datacomputer

without requiring entire files to be shipped back and forth.

The hardware of the system is shown in overview in Fig. 2 and

in greater detail in Pig. 3-

!

The program for the system processor handles the interactions

with the network hosts and is designed to control up to three

levels of storage: primary (core), secondary (disk), and

tertiary mass storage. Currently, the CCA facility is operaoing

with primary and secondary storage only, with the addition of

tertiary storage planned for 1975. Installation of a tertiary

storage module will leave datalanguage unchanged, and will

therefore be imperceptible to users of the system (except

insofar as it affects performance and the total storage capacity

available for data).

/

I
I
I
I
I
I
I

In addition to using the dedicated equipment at CCA, It Is

planned that datacomputer service will also make use of

hardware resources located at NASA/Ames, using CCA software.

The two sites will provide mutual backup for one another,

thereby guarding against accidental loss of data and providing

for satisfactory uptime of the overall service.

1.2 Status of Project

During this reporting period, Version 0/10 of the datacomputer

system was completed. This is the second major version of the

system to offer datacomputer services on the Arpanet. Version

0/10 has replaced Version 0/9.7, which was an "intermediate"

release. Version 0/10 handles non-ASCII and variable-length

data. It has file-level access regulation. (See chapter 2 and

Appendix for details.)

*-3-

I
I
I
I
!

' I
t
I

I

PRIMARY
STORAOS

MEMORY BUS

SECONDARY
STORAGE

SYSTEM
PROCESSOR

TERTIARY
STORAGE

I/O BUS

IMP
INTERFACE

PERIPHERALS

IMP

ARPANET

Figure 2. Hardware Overview of System

/h -ü-

I
I
I
I
I
I
I
1
1
I
I
I
I
I

ME10
MEMORY
(16K)

MEIO
MEMORV
(1610

MEIO
MEMORY
I16KI

MEIO
MEMORY
I16K)

it
DF10DATA
CHANNEL

RP10 0ISK
PACK CONTROL

RP02DISK h
RP02 DISK

SYS. CONC.
SA10A

IBM
CHANNELS

CALCOMP
1030

! TERTIARY |
STORAGE I-

8 INTERFACE !

CALCOMP
DUAL
230OISK

X
g TERTIARY J
J STORAGE 8

RP02 DISK

RP02 DISK

RP02 DISK

1
8

TENEX
PAGER

KAIO
CENTRAL
PROCESSOR

KSR35
CONSOLE

BAIO
CONTROL

LTOLINE
PRINTER

DC10A DATA
LINE SCANNER
CONTROL

MEIO
MEMO.IY
I16KI

MEMORY
BUS

TD10
DECT APE
CONTROL

TUS6 DUAL
DECTAPE

TUS6 DUAL
DECT APE

TM10A TAPE
CONTROL

DC10B
DATA
LINE
GROUP
UNIT

r\ s
VT06

TERMINALS

KSR35
LOGGING

TU30B
MAG. TAPE

IMPIO
INTERFACE

303
MODEMS

TIP

VADIC
103
MODEMS

ARPA
' NETWORK

DIAL-UP
LINES

I
Figure 3. Hardware Block Diagram - CCA Installation

(Equipment in dashed outline is planned for 1975)

A-5-

I
f

I
w
«•1 i i

i

The project continues on an Increasing scale to interact with

actual and potential datacomputer users. New user programs

have given us more operational experience with the system.

Much attention is being paid to the seismic community, the

weather community, and other users to determine their data-

computer requirements and adjust the implementation priorities

accordingly.

Currently only disk storage is available to the system. A

Calcomp Dual 230 disk was installed during the fourth quarter

of 1973. A second Calcomp Dual 230 Usk will be added later

in 1974. This will bring the total CCA storage capacity to

about 4 billion bits. Piano call for the addition of large

tertiary storage in 1975-

i
I
I
I
I

St-6-

-t_

?.. Software Implementation

I During this reporting period, Version 0/10 replaced Version

0/9-7 as the system offering service of the Arpanet. The new

I features of 0/10 &re summarized in this section. (See

" Appendix, "Datacomputer Version 0/10 User Manual" for details.)

Specifications and implementation of Version 0/11 were begun. I
I
I
I
I

I

2.1 Request Handler

Data Description. The datalanguage user must supply descrip-

tions for all data, whether it is data being transmitted to

or from the datacomputer (port description) or data being

stored at the datacomputer (file description). The data may

be tree-structured. The simple data types handled by Version

0/10 are 7-bit ASCII, 8-bit ASCII, and uninterpreted bytes

or byte strings (with a user-specified byte size less than or

equal to 36). Variable-length data may have either a one-

byte preceding count, a one-byte delimiter, or, if it is in

a port, a trailing "punctuation" character (i.e., end-of-

record, end-of-block, or end-of-file marker).

The previous restriction that a file or port must be a list

has been lifted. Also lifted is the size restriction that

inner containers (i.e., containers inside of files or ports)

must be less than 2560 characters.

The data description facilities in Version 0/11 will be the
I

same as in Version 0/10.

Data Operations and Access Methods. In Version 0/10 the user

may store files, retrieve files, replace files, and append to

files. The user may also retrieve subsets of a file specified

by boolean expressions on multiple variables. In retrieving

or storing data, the datacomputer can also reformat it.

fr-7-

I

Unlike earlier versions, 0/10 allows members of inner level

lists to be used in boolean expressions. (This is sometimes

called a keyword feature; it allows an attribute — or

container, in datalanguage terms — that occurs several times

in one container with different values to be used in a

retrieval specification.) Members of inner level lists may

also be inverted. However, only EQ can be evaluated using

the inversion; evaluation of NE still requires sequential

search of the data.

I
I
I
I

Version 0/11 will introduce a rudimentary updating capability.

Replacement of uninverted fixed-length containers will be

possible. This includes fixed-length containers that are

inside of variable-length containers.

In addition to specifying a set of containers by content, in

0/11 the user will be able to specify a set of containers by

position in a list, called the index number of the list

member. The set specification may be used either for retrieval

or for updating.

In order to allow efficient retrieval of variable-length

containers, the auxiliary structure, called a Container

Address Table (CAT), will be implemented. The CAT provides

a mapping from index number or internal record number to

logical address. It can be used both for indexed and

inverted retrievals.

Data Privacy. Version 0/10 has directory-level access

regulation, that is, regulation at the file level and higher.

The classes of users are defined by knowledge of passwords,

by host, and/or by socket number. The privileges to be

granted or denied are read, write, append, login, and control

of privileges.

#-8-

I
I
I

2.2 Services

Version 0/10 supports multiple volumes. This allows the

datacomputer to use both of the CCA 3330-type spindles for

storing datacomputer files. These disks are treated as

"special disks", not as part of the normal Tenex page space.

A utility routine that dumps datacomputer files to magnetic

tape was added. It can run as a background job without

interfering with datacomputer services.

I
1

/J--9-

3. Network Services

I
I
I
I
I
I
1
I
I
I
I
I
I
I

3.1 User Programs

The datacomputer is accessed by user programs which run on

other hosts on the Arpanet and send datalanguage requests to

the datacomputer. In order to gain operational experience

with the datacomputer and the problems associated with using

it, and in order to facilitate usage of the datacomputer

system, CCA has written a number of user programs.

During the previous reporting period, two such programs were

written: SMART, which generates datalanguage for users at

terminals, and FORPAC, which provides an interface between

Fortran programs and the datacomputer. Based on our experience

with these two programs, a set of standard subroutines (DCSUBR)

needed for communication with the datacomputer were specified

and implemented. There are routines to set up network

connections, send datalanguage, send data, read data, and the

like. Written in Macro-10, DCSUBR serves as a model for

similar programs to be written "or other machines.

One of the user programs to incorporate DCSUBR is RDC (Run

Datacomputer). RDC provides convenient terminal access to

the dacacomputer from a Tenex host. Datalanguage is trans-

mitted from either a teletype or from a local Tenex file,

and datacomputer responses are displayed.

At the user's request, RDC will set up a secondary network

connection as a data path to or from the datacomputer. This

allows for transfer of non-ASCII data (not accepted over the

datalanguage port) and it results in more efficient data

transfers over the network. Unlike other user programs, RDC

does not generate datalanguage; rather it gives a person a

way to submit his own datalanguage. (The only exceptions

fl -lo-

I
I
I
I
I
1
1

1
I
1
1

are the datalanguage CONNECT arid DISCONNECT statements.)

RDC has been useful for debugging and for setting up new data

bases.

A second program to utilize DCSUBR is DFILE. DFILE, which

runs on any Tenex host, allows local user: to archive their

files on the datacomputer. The user, from his terminal, can

associate attribute-value pairs with his file, and, later,

retrieve the proper files based on boolean combinations of

these pairs. DFILE may be used advantageously for files

whose usage is not limited to i single host or for files

which are public and meant to be distributed. The attribute-

value pairs give the DFILE user a way of browsing through the

DFILE database to find out what files are available.

3.2 User Statistics

The following chart indicates the number of times each

network site has connected to the datacomputer in the present

reporting period. During the period March through May, both

Versions 0/9-7 and 0/10 were available over the Arpanet. The

figures for this period indicate the changeover from one

version to the next.

fh -li-
-■:•

I
I
I
I I

I
I

4

I
i

1
1
1
i
!

Total CCA MIT—DMS Harvard Other

January 419 160 64 150 45
February 1323 143 1005 118 57
March

0/9.7 1002 323 457 149 73

0/19 15

1017

15

338

April

0/9-7 956 284 381 174 117
0/10 391 350 20 0 21

1347 634 401 174 138

May

0/9.7 789 46 517 200 26

0/10 1142 712 186 191 53

1931 758 703 391 7°
June

0/10 995 544 160 168 123

Number of CONNECTS to CCA

Datacomputer System - 1974

ft-12-
§
1

I

I

APPENDIX

Working Paper No. 9

"Datacomputer Version 0/10 User Manual"

June 1, 1972*

i

$ -13-

Datacomputer Version 0/10
User Manual

Datacomputer Project
Working Paper No. 9
June 1,1974

Contract No. MDA 903-74-C-0225
ARPA Order 2687

t %

i I

)

A-if
Computer Corporation of America
575 Technology Square
Cambridge, Massachusetts 02130

t

1

Datacomputer Version 0/10

User Manual

Computer Corporation of America

1 June 197U

&jr

%
I

L

I
I
I
I
I
I
I
1
I
I

I
I

Table of Contents

1. Introduction to the Datacomputer 3

2. Containers » *
Containers Jj
Outermost Conv.alners , *
The Directory °
Pathnames '
Creating Nodes '
Creating Containers 8

3. Directory Commands 13
OPEN 13
MODE 1«*
CLOSE 1U
DELETE II»
LIST 15

i». Security and Passwords ^
Introductory Concepts *'
Gaining Access to Nodes: LOGIN 17
Privileges }°
Privilege Block 19
User Identification Fields 20
Privilege Set Specifications 21
User Clesses Boo ••»••••• ••••••••
Creating Privilege Blocks: CREATEP 2U
Deleting Privilege Blocks: DELETEP 27
Example • 28

5. Assignment and FOR-Loops. . 31
Assignment Involving Outermost Containers 31

I The Matching Rules 31
Padding and Truncation 32
Examples 33

I Selection of LIST Members. 36
Retrievals Using Inner LIST Members 37
Retrievals Using Inverted Containers 39
Assignment With FOR «»0

6. Using the Datacomputer '♦3

:■

I
I
I
I

Page

Appendices

A: Summary of Datalanguage Syntax 52

B: Reserved Words 65

C: Inversion: Technical Considerations 66

0: Network Interaction with the Datacomputer . .69

E: Implementation Restrictions 71

F: Differences Between 0/9 and 0/10 75

/

I

Page

Chapter 1: Introduction to the Datacomputer

InfroHnrtlnn

The datacomputer Is a shared large-scale data utility
system designed to serve the computers on the ARPA network.
It may be thought of as a "black box" that performs data
storage and retrieval functions in response to commands
phrased in a standard notation/ called datalanguage.

This document describes the currently-running version
of the datacomputer software, and includes information about
how a user program can access the system, transmit
datalanguage, process the datacomputer's responses, and
transmit and receive data over the network.

The datacomputer in its full implementation will
provide an on-line storage capacity of one trillion bits and
an extensive set of services to user programs. (1) The
present version is a preliminary version, providing a
limited amount of storage and a restricted set of user
functions. Subsequent versions will progressively enlarge
the range of services and the amount of storage available
for users.

/

(1) See Datacomputer Project Working Paper No.
Datalanguag* Design Concents. December 1973.

8, Further

Page

Chapter 2: Containers

Container, jk

The container is a basic concept in datalanguage. A
container is an imaginary box which, like a FORTRAN
variable« may contain data; a container may also enclose
other containers. For example, some information about
people could be represented as:

i
I
I

PEOPLE

PERSON PERSON

NAME ADDRESS SOCSECNO

FIRST LAST

<

o

<

O

STREET CITY «TÄTE

< < <
H 1- b < < <
O Q Q

2
<
Q

I
/

Figure 2-1. A container structure

Here PEOPLE, PERSON, NAME, and ADDRESS are containers
enclosing other containers; FIRST, LAST, STREET, CITY,
STATE, and SOCSECNO are containers that enclose only data.

The description of a container has several parts. It
includes the container's Ident, type, and size, and perhaps
some additional attributes. The container's Ident. or
simple name, is a string of 100 or fewer letters, digits or
the special character *, by which datalanguage requests
refer to the container. The first character of an Ident
must be a letter or the character X. Certain reserved words
may not oe used as container Idents; these are listed In
Appendix B of this document.

»

i
t

Some sample Idents are:

Chapter 2: Containers Page

AVERYLONGIDENTABCDEFGHIJKLMNOPQRSTUVWXYZ
PEOPLE
WEATHEROSTATIONS
tCCA

Containers
contents.

are of four types, depending on their

I

A container that '» a LIST contains some number of
other containers. The LIST-members may be containers of any
data type« but they must all have the same description.
PEOPLE (abo</e) is an example of a LIST.

A container that is a STRUCT, or STRUCTURE, contains
some number of other containers/ which need not have
identical descriptions.(1) The descriptions of all the
containers that are enclosed by the STRUCT form part of the
description of the STRUCT itself; and on every occurrence of
the STRUCT every one of its sub-containers must appear in
the same order. ADDRESS is an example of a STRUCT.

A container of type BYTE contains one byte of data. A
container that is a STR or STRING contains a string of
bytes.(2) FIRST is an examp'» of a STR. The user can
specify the byte size of BYTEs and STRs and can Indicate an
interpretation of 7- or 8-bit ASCII or uninterpreted (See
below).

A LIST or STR has a size associated with it. The size
may be fixed or variable. The size of a STR is the number
of characters in it/ while the size of a LIST is the number
of elements in the LIST.

Outermost Containers

A container that is not contained by any other
container is called an outermost container: outermost
containers are different in several respects from other
containers.

An outermost container in datalanguage has a function,
which is either FILE/ PORT/ or TEMPORARY PORT (which may be
abbreviated TEMP PORT). A FILE contains data kept in the
datacomputer. When a FILE is created (see below)/
datacomputer space is allocated for it. A PORT describes
data that is transmitted to or from the datacomputer. A
TEMP PORT is a PORT whose description is not permanently

■

&

(1) STRUCT and STRUCTURE are synonyms in datalanguage.
Hereafter/ STRUCT will normally be used.

(2) STR and STRING are synonyms in datalanguage. Hereafter/
STR will normally be used.

Chapter 2: Containers Page

stored, unlike the descriptions of other containers. TEMP
PORTs vanish at the end of the session In whtch they were
created.

■:,■-

\

l
l
l
l

Ub£ Directory

The ident of an outermost container/ whether it is a
FILE or a PORT, Is unlike other Idents, in that it is
entered in the datacomputer's directory. The directory Is
conceptually a tree; the entries in it are cal led jo&dfis.. A
node may have one or more subordinate nodes, unless it
represents a container, in which case it cannot. A portion
of a hypothetical directory Is diagrammed below; it may be
read as indicating that the nodes F and G are subordinate to
DATA, which In turn Is subordinate to CCA. Only the
bottom-most nodes In this tree, F and G, may represent
containers, and they represent outermost containers.

CCA

DATA

F G

Figure 2-2. A portion of the directory.

Only a bottom-most node of the directory may be a
ident; only an outermost container has its Ident
the directory.

container
entered In

I
I

Normally, the first thing a user does after attaching
to the datacomputer is log in to a directory node. For most
purposes, he only sees his login node and the part of the
directory that Is subordinate to his login node. (The LOGIN
request Is discussed In detail In Chapter •»,)

■J

\

I
I
I
i
I
I
I
I
I

Chapter 2: Containers Page

Pathnames

Pathnames are used to reference nodes In the directory
tree by describing a path through it. They have the general
hierarchical form

N0DEl.N0DE2...N0nEn

where N0DE2 is a node directly subordinate to NOPEl.

There are several varieties of pathnames. The two
classes of directory objects referenced by pathnames are
closed nodes (including all nodes that are not outermost
containers and all outermost containers that are not OPEN)
and OPEN outermost containers. There are three areas In
which names can be found: the TOP, LOGIN, and OPEN contexts.
Thus there are six possible pathname types, only five of
which are reasonable. (A closed node in the OPEN context
Isn't.)

Closed nodes can be referenced either by a complete
pathname (started with the reserve^ word STOP), which causes
the name search to be anchored at the top of the directory
tree, or a ^OGIN pathname, which anchors the search at the
current LOGIN node. Either pathname may contain passwords.
(Passwords are discussed In Chapter k.)

OPEN nodes may be referenced by a simple complete
pathname or a simple LOGIN pathname, neither one of which
can contain passwords, or by an OPEN node simple name. An
OPEN node simple name is the name of the outermost
container.

Creating Nodes

A node in the directory Is created with a CREATE
request. Such a request has the form

CREATE <path.iame> ;

Only one node may be created by a single CREATE request, and
a higher-level node must always be created before one
subordinate to It. The reserved words listed In Appendix B
may not be used as directory node names.

As an example, let us create the outermost container F,
a LIST of U-character strings; the container's ident will be
entered in the directory as indicated in Figure 2-2, We
assume that nothing Is presently In the directory,, so we
must start by creating the topmost node.

-.
.■■:

Chapter 2: Containers Page

CREATE CCA;
CREATE CCA.DATA;
CREATE CCA.DATA.F FILE LIST

F00 STR U) ;

Now that CCA and CCA.DATA have been created/ we could
create CCA.DATA.G with only one CREATE request; i.e.

CREATE CCA.DATA.G PORT LIST etc.

Creating Containers

Outermost containers are created by a more complicated
form of the CREATE request. The CREATE statement must tell
the datacomputer all about the container, for example. Its
ident, function, size, and data type are Included. An
outermost container and all Its subcontainers must be
created at once, with one CREATE request.

The CREATE request causes the description to he stored.
It also causes space to be allocated if the container Is a
FILE.

I

The full BNF in Appendix A indicates succinctly the
precise syntax of the CREATE statement. It Is worth looking
at a few examples before looking at all the details of
descriptions. A LIST of STRings:

CREATE ALPHA FILE LIST SUBCONTAINEDSTRING STR (UU) ;

Here the size of the outermost LIST is omitted, so the
datacomputer will calculate a default size.

A LIST of STRUCTs, each of which contains three
strings:

CREATE BALLTEAM FILE LIST (25)
PLAYER STRUCT

NAME STR(20)
POSITION STRC2)
UNIFORMfcNUMBER STR(2)

END;

The datacomputer will allocate enough space for the file
BALLTEAM to hold 25 copies of the STRUCT named PLAYER. Note
that END is required to terminate the description of the
STRUCT.

The example diagrammed on page ki

CREATE PEOPLE FILE LIST
PERSON STRUCT

v.

Chapter 2: Containers Page

NAME STRUCT
FIRST STRU5)
LAST STRU5)

END
ADDRESS STRUCT

STREET STR(15)
CITY STR(15)
STATE STR (15)

END
SOCSECNO STR(IO)

END;

The elementary data types are BYTE and STR. Containers
of these types contain data/ not other containers.

STRIngs and LISTs must have a size. For STRtngs, the
size Is the number of bytes In the STRing. For LISTs the
size is the number of LIST members (e.g. the number of
PERSONS In PEOPLE above.) The three forms for Indicating the
size are:

(n) -- a fixed size of n
(m/n) -- a minimum size of m and a maximum of n
(,n) — a minimum dimension of 0 and a maximum of n

where m and n are positive integers.
For an outermost LIST or STRing/ no size need be

specified. The default minimum is 0, and the default
maximum Is based on what will fit In the default space
allocation.

The datacomputer needs a way to find the end of the
data in variable-sized LISTs and STRIngs. The three options
are a preceding count/ a trailing character/ and punctuation
(I.e. a device-dependent marker). A one-byte preceding
count is indicated with the keyword parameter

/C«l

Version 0/10 cannot handle counts larger than one byte.
Thus/ if there is a count/ then the maximum dimension must
be small enough to fit Into a one-byte count. (Byte size is
discussed further below.) The value of the count does not
include the count byte itself.

The syntax to Indicate that there Is a one-byte
delimiter is

/D«n

or

■i
.

■

■■■?

Chapter 2: Containers Page 10

,D< •a'

I
I
I
!

I

J

where n Is a decimal number and a is any ASCII number,
letter or special character.

The datacomputer considers punctuation to be different
from delimiters. Punctuation over the network is a special
character (specifically EOR, EOB, or EOF) inserted In the
data but not considered part of the data. This is indicated
by

and

,P«E0R
,P=E0B

,P=E0F

A fixed-size container (including a STRUCT) may have a
P, D or C parameter/ but no container (fixed or variable)
may have more than one of these.

A datacomputer FILE can be punctuated, but none of its
sucontainers can be. The FILE punctuation defaults to EOF.
Variable-length subcontainers must have either a C (count)
or D (delimited) parameter.

If a variable-sized PORT does not have a P, D, or C
parameter, then it defaults to P«EOF. Variable-sized
subcontainers of a PORT default to P*E0R.

Punctuation is hierarchical. A container that is
punctuated with EOR cannot contain one that is punctuated
with EOB or EOF. A container that !s punctuated with EOB
cannot contain one with EOF. If higher punctuation Is found
In a data stream where the datacomputer Is looking for lower
punctuation (e.g., an EOB where an EOR is expected), the
higher punctuation implies the lower.

(1) Note that the default punctuation for PORTs is different
from what it was in Version 0/9. Consider the description

CREATE P PORT LIST
R STRUCT

A STR (1)
B STR (1)

END;

FOR VERSION 0/9 EVERY R MUST END WITH AN EOR. In Version
0/10, since R is fixed-size, no EOR's are expected, and an
error message is output If an EOR or EOB Is found. If R's
end with EOR, then

,P-E0R

should be added to the description of R.

Chapter 2: Containers Page 11

The interpretation of a STR is one of ASCII (i.e.
7-bit ASCII), ASCI 18, or BYTE, as In the following three
examples:

A STR ASCII (5)
P STR ASCI I 8 (1,10), C-l
WALDO STR BYTE (73)

The default byte size for BYTE is 36 bits,
if the byte size is given explicitly
paramter

,B«n

BYTE is optional
wi th the keyword

where n is a positive integer less than or equal to 36. The
,B«n option may not be used for ASCII STRings. If no byte
size or interpretation is given, then the STR Is 7-bit
ASCII.

At times the datacomputer needs to fill in a value or a
part of a value. The user can specify a fill character
thus:

,F> 'a'

/

I
I
I

or
,F=n

where a is an ASCII character and n is a decimal number.
The default fill character is blank for ASCII data and zero
for non-ASCII data.

Note that a byte size and a fill character can apply to
a STRUCT or a LIST as well as a STR or a BYTE. Consider the
fol(owing:

CREATE F FILE LIST
R STRUCT, B-36

A STR (5)
END;

The byte size of A Is 7. A takes up 35 bits. There Is one
"unused" bit after A before the next R. Thus, R must be
filled. Even though the data (I.e. A) Is ASCII, R is
non-ASCII because it does not have a 7-bit byte size.
Hence, the default filler of 0 Is used for the bit.

The rules for punctuation, byte size and fillers are
simple but not at all Intuitive. In general, specifying
punctuation rather than relying on defaults helps avoid
errors. Also

LIST <pathname> *DESC;

I
I
I
I
1
I
I
I
I
I
I
I
I

Chapter 2: Containers Pane 12

win output a complete description, including all default
lengths, dimensions, punctuation, byte sizes and fillers.
(The LIST command is discussed more fully below.) It Is
often instructive to look closely at the %DF.SC to see where
it Is different from what the user expects.

BYTEs and STRlngs that will frequently be used for
retrieval may be inverted. For members of outer LISTs, the
option

,1-D

Is used, for members of inner LISTs, the option

/l*l

is used. Inversions and the difference between outer list
members and inner list members is discussed more fully In
the section on W'TH.

Page 13

/

I
I

Chapter 3: Directory Commands

OPEN

Before data can be input to or read from a FILE or
PORT, the container must be open, and a mode must be
specified for It. The mode of a FILE or PORT, which is set
when the container is opened, determines the legality of
various operations on that container.

Mode is one of READ, WRITE, or APPEND. Data can only
be transmitted out of a FILE or PORT that Is open in READ
mode, but either out of or into a FILE or PORT thnt is open
In WRITE or APPEND modes. The difference between WRITE and
APPEND lies in their treatment of any data that is already
In the container when it is opened. When an assignment Is
made to a container that was opened In WRITE mode, any data
it contained previously is thrown away, hut a container
opened In APPEND mode has newly-arriving data written after
the end of any already-present data, which is thus
preserved.

A variation of WRITE and APPEND is WRITE DEFER and
APPEND DEFER. When DEFER Is indicated as part of the mode,
a more efficient technique of updating the inversion is
used.

When a FILE or PORT is created, It is opened In WRITE
mode. A FILE/PORT that already exists may be opened with an
OPEN request:

OPEN <pathname> <mode> ;

which specifies the name of the container that is to be
opened and the mode of opening. The name can be either a
complete pathname (started with the reserved word |TOP) or
it can be a login pathname, started with a node immediately
subordinate to the current login node. The mode must he one
for which the user has privileges (see Chapter •»). The mode
argument may be Isft out of an OPEN statement, In which case
the container Is opened in READ mode If it Is a FILE and
WRITE mode If It is a PORT. Two outermost containers with
the same Ident may not be open at the same time.

For example, to read data that was previously stored in
CCA.DATA.F, a file, either

OPEN CCA.DATA.F;

I
I
I
I
I
I
I
[

*L
[

i
1
I
1
I

Chapter 3: Directory Commands Page Ik

or, if the current login node is CCA,

OPEN DATA.F;

WILL OPEN F PREPARATORY TO DATA TRANSFER REQUESTS.

MODE

The mode of a container that is already open may be
changed with the MODE statement:

MODE <paragraph> <mode> ;

The pathname can be a simple complete pathname (I.e. a
complete pathname with no passwords), a simple login
pathname, or a node name.

CLOSE

The complement of the OPEN request is the CLOSE
request. When you have finished using an open container,
close it wi th

CLOSE <pathname> ;

where pathname must be the simple pathname of an open
container. Closing a FILE/PORT with a function of TEMPORARY
PORT has the effect of deleting its description from the
datacomputer.

DELETE

The ability to delete directory nodes is useful in
maintaining a data base at the datacomputer. The DELETE
request allows one to delete one or several outermost
containers and all the data they contain.

DELETE <pathname> ;

causes the node named by <pathname> to be deleted from the
directory. The pathname must be the login pathname. Thus,
only nodes subordinate to the login node can be deleted.
The node cannot have any subordinates.

DELETE <PATHNAME>.** ;

deletes the node and all subordinate nodes. If any of the
deleted nodes are outermost containers, the container
descriptions and any associated data are deleted as well.
The DELETE request need not be used on TEMPORARY PORTs, as
they are automatically deleted either when they are closed,

Chapter 3: Directory Commands Pane 15

or at session end.

If the data stored in FILE is to be deleted« but the
container description itself retained in storage« the DELETE
request cannot be used. Instead« CREATE a port B with a
description matching the container A that is to be emptied«
and execute the assignment A « B with no data in B. the
effect of this assignment is to delete all the data from A.

I
I
I
I

I

JJLSI

The LIST request is the means
interrogates the datacomputer about
request has two arguments: the node or
object of the inquiry« and the type of

by which the user
his environment. The
nodes which are the
information desired.

The first argument consists of a set of nodes in the
directory. Possible node sets are: 1) a single node« 2) all
nodes directly subordinate to a given node« 3) a node and
all its subordinates« and «»* all open files and ports. A
single node is specified with a full pathname« which can
include passwords and can be anchored at the top node
(STOP). The set of a node's direct subordinates is ntiui / i ■ iic sc i ui a nuuc a u i i cv. v sui/vi «■ • u«. »«<> ■ a
indicated with either a "*" (the login pathame is Implicit)
or a full pathname followed by a "*". Either "**" or a full
pathname followed by a "**" designates a node and all its
subordinates. The set of all open nodes is referenced by
«OPEN. «TOP alone defaults to «TOP.**.

There are five kinds of avail
are: 1) node names and related da
and possibly mode and connected ar
descriptions (of FILEs and PORTs
of data descriptions« k) allocated
privilege blocks associated wlth
options are specified by «NAME«
«SOURCE« «ALLOC or «ALLOCATION«
respectively. The default option

able information. These
ta (node type« privileges«
gument)« 2} parsed data
)« 3) original source text
space (for FILEs)« end 5)
nodes. These information
«DESC or «DESCRIPTION«
and «PRIV or «PRIVILEGE,

is «NAME.

Not all of the kinds of Information are available for
all of the possible node sets. The options that are
available are:

Node Set Option

<pathname>
<pathname>
<pathname>
<pathname>
<pathname)
<pathname>.*
<pathname>.**

«DESC
«NAME
«SOURCE
«ALLOCATION
«PRIVILEGE
«NAME
«NAME

Chapter 3: Directory Commands Pajje 10

<pathname>.** «SOURCE
»OPEN «NAME
»OPEN «DESCRIPTION
«OPEN «SOURCE
«OPEN «ALLOCATION

;
'■ I

v

Page 17

Chapter I»: Security and Passwords

Introductory Concents

The 0/10 version of the datacomputer provides file-level
security (restricted access to nodes and attendant data) by
means of a system of privilege blocks, described In the
following sections. One or more (or no) blocks may be
associated with a particular node. Each privilege block
defines a class of users who may be given access to the node
and the set of or!vlleges to be granted to such users.
Whenever a user attempts to access a node or file, the
datacomputer will scan that node or file's privilege
block(s), If any, to ensure that the user is 'legal' and to
determine what privileges will be allowed.

ChflOter Organl7atinn

This chapter Is divided Into three principal parts. The
first sections describe what privilege blocks are and how
they provide file security functions for datacomputer users,
and introduce the reader to the security features of
datalanguage. The second part completely specifies the
datalanguage needed for creating, deleting and manipulating
privilege blocks, and completes the description of their
components begun in the first part. The third section
offers several examples of how to add, delete and look at
privilege blocks.

Gaining Access Jta Nodes; 1QGJÜ

I
I
I
1
t
t

Every node in the directory has certain privileges
{associated with it. For example, the ability to create

inferior nodes, or to read or write file data, are
privileges which may be granted or denied to a particular

I node. When a user initially connects to the datacomputer he
Is automatically connected to the top node of the directory
tree (*T0P), and he (I.e., the fcTOP node) Is granted minimal
privileges. To acquire more, he must log in to some node,

I which Is called, curiously enough, the login node.

Logging into this node establishes the user's Identity for
■ subsequent pathname references (1). It should be kept In

I
I

(1) !n addition to establishing a user Identity for
pr'vilege purposes, logging In performs various accounting
and pathname context functions.

Chapter U: Security and Passwords Par.e lg

mind that a user is identified to the datacomputer only hy
his login node. Thus, throughout this chapter, the terns
'user-id' or 'user name' are to be understood to mean
nothing more than the full pathname, including the specified
privilege block (If any) at each level (2), of the node to
which the user has logged-In.

Whenever a logged-in user references a node, the login
pathname is compared against the user-id field of every
block in the node's privilege block list. If a block Is
found whose user class description includes the pathname of
the login node, the privilege-set described by the block
will be added to (or taken away from) the privilege set
already given to the login node.

Privileges

Privilege set specifications come In two flavors: privileges
to be granted (added) to the node and privileges to be
denied (taken away). If a privilege is not specified (as
either grant or deny), then that privilege (or denial of It)
Is passed, unchanged, from the superior node to Its
subordinate. At each node level, the deny bits specified In
the given privilege block are NOT-AND'ed with the privileges
of the superior node. Then the grant privileges are OR'ed
with the result, to yield the privilege set for that node.

It Is important to understand that nrl vi Tages mav Jig added
and taken &LJJ. äi £Jt£o lsx&l of lh& pathname. For example,
suppose the login node has the privilege set <CLWA> (3), and
a subnode's privilege block specifies: grant read privilege
(GBR), and deny write privilege (D»W). The result at the
subnode would be the final privilege set of <CRA> (it).

(2) Pathnames may be aualIfled or unaualIf led. A qualified
pathname Is one containing password strings for the purpose
of gaining particular privileges upon opening the node,
e.g./

N0DE1('PASSW0RD1').NODE2.NOOE3('PW3')

is a pathname qualified at the first and third levels by the
passwords 'PASSW0RD1' and 'PW3', respectively. The pathname
NOOE1.NODE2.NODE3, on the other hand, Is unqualified. Prior
to Version 0/10, all pathnames were unqualified.

(3) This is a shorthand way of saying 'this node has been
granted control <C>, login <L>, wrlte-to-fIle <W> and
append-to-fIle <A> privileges. Specific privileges are
described In detail below.

;

/

Chapter k: Security and Passwords Page 19

Note that a node can never look at, modify, or affect a
superior node in any way not possible at the level of the
superior. That is, if a user cannot look at the privilege
blocks for a node, he cannot acquire that privilege for that
node from an Inferior one. However, an inferior node may
well have privileges relative to its subnodes that Its
superior does not have relative to its subnodes. For
example, scanning along the pathname A.B.C.D.E...., A.B.C
may have only read privileges, but does not have write
privilege. Now, the node A.B.CD may be »rented write
privilege at level D (thus awarding A.B.C.Ii read/write
privileges), this does not affect A.B.C. It still has only
read prlvilege.

Privilege Block

Privilege blocks are data structures which define access to
nodes. Each privilege block Is associated with one
particular node. Any node in the directory, Including ports
and file, may have privilege blocks defined for them. A
node may have any number (including zero) of priv'lege
blocks. When an attempt is made to access a node which has
privilege block(s), those blocks are scanned for a user-Id
corresponding to the current login pathname and for a
password string matching that supplied by the user In the
request referencing the node (e.g., LOGIN, OPEN, DELETE,
etc.). If a match is found, the matching block's privilege
set bits are examined and the appropriate privileges are
granted/denied the node. The matching algorithm Is
described below in more detail.

Each privilege block can contain:
user name
host name

' socket number
password character string
grant privlleges
deny pri vfleges

Each of the above fields fells Into one of two categories:
1) a description of the group of users which may access the
associated node; and 2) the privileges to be granted to
these users. ^

The privilege block Is completely specified at the time It
is created. When a node Is referenced, only the password
string, If any, is required; the user-Id (Including host
name and socket number), has been retained by the login
process.

(»») The login privilege is not propagated to subnodes. It
applies only to the node for which It is explicitly granted.
See below.

/

(5) User classnames are defined below.

Chapter ki Security and Passwords Page 20

Privilege blocks are created by the data language command
CREATEP. They are deleted by the command DELETEP. Existing
privilege blocks may be displayed via the LIST nodename
tPRIV(ILEGE) command. The full syntax of these commands is
described below.

UäfiT. identification Fields (User-ID)

The user Identification fields include some or all of the
following: a valid login pathname or a class of login
pathnames/ the number of a host computer/ the datacomputer
socket number/ and a password character string. These
fields are discussed in more detail In the following
sections.

Mail

The host name is an optional field. If specified/ It must
be a decimal number from 1 to 255 designating the number of
the host computer. The host name cannot be a number greater
than 255/ or less than 1. It cannot be a character string/
except for the special cases LOCAL and ANY.

LOCAL host indicates that the user should not have connected
to the datacomputer via the ARPANET. Effectively, this
means (at this time) that the user Is located at CCA and is
connected to the datacomputer via a local terminal.

The host name may also be ANY/ which means that any host/
foreign or local/ is acceptable.

If a host name is not specified/ the default value Is ANY.

User Name

The user name is the pathname or classname (5) of the login
node(s) which may gain access to the node associated with
the privilege block. Note that a different privilege block
must be created for each specific user permitted to use a
given password. For example/ If two different users/ say
CCA.WALDO and CCA.DINGLE/ wanted to use the same password
string CFOO') to gain access to a node/ two separate blocks
would have to be created/ one per specific user name. Thus«
In this example/ one privilege block would contain the
information CCA.WALDO (TF00'); the other/

■ <■■■'..

:

> '

Chapter kl Security and Passwords Page 21

CCA.DINGLE ('F00').

If no user name
grants any user

Is specified, the
access to the node.

default Is **, which

The socket number Is a 32-blt number, e.g./ 600403, or ANY.
This Is an Identification number assigned by the foreign
host to the user logged In on that foreign host. Usage of
the socket number in the CREATEP statement ensures that only
specified users at the foreign host stte may gain access to
a particular node.

Socket number defaults to ANY.

I
I

Password

A password consists of an alphameric string enclosed by
single quote (') characters, e.g., P-'FOO'. Non-printing
characters» except blanks, are not valid in a password
string. Blanks may appear at any point in the quoted
string. Tab characters are not permitted.

A privilege block need not contain a password. In this
case, none should be given when referencing the node. Note
that J3Q password Is not the samp £&, and is is treated
differently from, a nui* password (•'). Null password is
treated as a password of zero length, and must be supplied
as such whenever the node Is referenced.

Privileg» sppciflcatittns

The following privilege bits are defined for 0/10:
LOGIN (L)

In order to control login Identttijs
more closely, the ability to log In to a
node is not passed to subordinates. As
a result, -L (deny login) is
meaningless.

CONTROL (C)
Control includes complete subordinate
control and privilege control. Control
is required for creating and deleting
nodes, file

s and privilege blocKs. It
Is also required for listing privilege
blocks. It Is very powerful, and cannot
be removed by an inferior: -C is ,iot
permitted. After 0/10, C may be spWt
into meaningful components.

•'I

i

Chapter U: Security and Passwords Page 22

Data Control Privileges
READ (R)
WRITE (W)

W implies R and A.
APPEND (A)

A does not imply R.
Conflicts are not allowed

+R and -R.
in one tuple/ e.g.

Ordering A£ PrivlIBBR Blocks

Ih£ ordering ol privl
is referenced, the
are scanned linearly
password entered by
user-id of the privll
identity. If they
granted/denied, and
privilege set are
privilege blocks
password/user-id ma
privlleges.

lege blocks is important■
privilege hlocks (if any)
for a password string

the user. If a match
ege block Is compared
match, the associated
access appropriate to

awarded to the node. If
is reached without
tch/ the node is opened with no

When a node
for that node
matching the
is found/ the

to the login
privileges are
the granted

the end of the
finding a

Since the privilege blocks are scanned linearly/ thetr
ordering defines their selectivity. For example/ suppose a
node to have two privilege blocks which specify the same
password Cfoo') but different login nodes, say* A and **/
and suppose that the block with user name A grants greater
privileges (read/write/append) than that with ** (which
permits read). The proper ordering/ as displayed by a

LIST WALDO.NODENAME %PRIV(I LEGE);

statement/ is as follows: (note 6)

(1)/U«A/H-ANY/S»ANY/G«RWA
(2),U«**,H=ANY,S»ANY,G«R (note 7)

If the order of these blocks were reversed/ so that the
block with the user name '**' were first/ then whenever the
password F00 was encountered the first block would be
selected; I.e., every login pathname would match the '**',
and the matching process would be complete. Thus/ the block

(6) Details of this command are given below.

(7) u-** means that any user name will be accepted as valid.

Chapter k: Security and Passwords Page 23

with the user name A would never
would he unable to open the node
which should be granted him.

be found, and the user A
with the greater privileges

In 0/10 the user is responsible for maintaining the desired
search order, by adding and deleting privilege blocks via
their block index numbers. The datalanguage for this
process Is described below. Future versions of the
datacomputer may provide an automatic ordering algorithm,
which could be manually overridden, If desired.

I
I
t

71

li£££ Classes ('Star' Feature)

Classes of users may be given access to a "ode by specifying
a user class as the user nane instead of a single user.
This is done by means of the and '**' ('star' and
'star-star') features. If a star appears in a pathname, it
is interpreted to mean: 'any single (non-null) partial
pathname is acceptable here'. That Is, if the nodes A.B.N1,
A.B.N2, and A.B.N3 exist in the directory tree, usage of the
user classname A.B.* would specify any of these three
pathnames. Stars may appear at any number of levels; for
example, if the nodes A.X.N1 and A.Y.NU exist, then the
user-name A.*.* would specify both of these nodes, as well
as any of the previous three. The use of a star at any
level Implies that there must be a partial pathname at that
level; e.g., the classname A.*.* could not specify node A or
A.J.

USftT Classes. cQf)t. ('SfnT-Stflr' FRatUfft?

The use of a single star In a
must exist at the level corr
and a star must be explicitly
level. The star-star featur
to several levels of nodes. A
name Is interpreted to mean: '
partial pathnames are acceptab
the example of the preceed
specified by any of the follow

A.B.N1.**
A.B.*.**
A.B.**
A.*.**
A.**

**

pathname indicates that a node
espondtng to that of the star,
specified for each desired

e Is designed to permit access
star-star ('**') in a user

any number (Including zero) of
1e here'. Thus, referring to
Ing paragraph, A.B.N1 could be
Ing:

For 0/10, only
The following,

A.*.C

tralling *'s
for example,

and/or a final
are Illegal:

** are allowed.

Chapter k: Security and Passwords Page 2h

A.**.C
A.*.**.D
A.**.*
*.B.**
** .*

Patalanguage ioc Elle Security

Two new datalanguage statements, CREATEP and DELETEP, create
and delete privilege blocks. They are discussed in the
following sections. The list command nas a new option/
%PRIV (or ^PRIVILEGE), which allows the user to list the
privilege blocks for a node.

CREATEP and DELETEP are privileged requests. They are only
accepted when the associated node can be referenced with
control privilege <C>. (This means that It may be necessary
to login to some particular node before any privilege blocks
can be added to another, and that passwords may be required
for the login process or for referencing nodes superior to
the node for which the privilege block Is to be added.)

Creating Privileg Blocks; CREATEP

Privilege blocks are created, and fully specified by, the
CREATEP command. A fully specified CREATEP statement might
appear as follows:

CREATEP N0DE1(,PW1').N0DE2, U-CCA.WALDO.*.**, H-3«»,
S-60U320,

P-'SECRET PASSWORD', G»R, D«WA, N«2;

In this example, the node for which we are creating a
privilege block is N0DE1.N0DE2. We must specify ('PW1') for
N0DE1 In order, perhaps, to gain control privileges at the
first level. The parameters which follow the nodename is
the privilege keyword list. These are discussed
individually in the following sections, and are summarized
In Appendices A and B.

CREATEP; üS&L üarne

The user name is spec 11.^ by 'U«' followed by an
unqualified pathname or classname string. The pathname may
have any number of levels. It must not contain password
strings for any level.

The following are valid pathnames/classnames.
CCA
CCA.WALDO.DINGLE

/■

*m

Chapter 4: Security and Passwords Page 25

I
i
I
I
I

CCA.*.*
CCA.*»
..*
*.**
*•

CREATEPi HQSt JÜMhßX

ThA host number Is specified by 'H-' followed by a decimal
number from 1 to 255, or either of the sirlngs LOCAL or ANY.

H-28
H-ANY
H«L0CAL

CREATEP; Socket Number

The socket number is specified by 'S-' followed by the
32-bit foreign-host assigned decimal number corresponding to
the directory the user is logged Into at that foreign host/
or the string ANY.

S-309U83
S«ANY

CREATEP; Password string

The password string is specified by 'P«' followed by any
datacomputer string constant (tabs may not be included/
although blanks are permitted)/ e.g./ 'PASSWORD 1», '? *
♦♦II1, or " (null password).

/ Note that if no password string Is specified at CREATEP
I time/ then that privilege block will have no password

associated with It. J!Q password is different from nul1
password (P«M)/ which Is a valid password zero characters
in length.

CREATEP; Grant Privileges

Privileges are granted by 'G«' followed by
C (control)
L (login)
R (read file data)
W (write file data)
A (append data to file)

In any combination and In any order, e.g./ G-CRAWL (all
privileges)/ G-WAR (read/write/append)/ etc.

Chapter ki Security and Passwords Page 26

CREATEP: Deny Privileges

Deny privileges are specified by 'D»* followed
Login (L) applies only to the node for
specified. It is not passed to subordinates,
cannot be removed by any inferior node, i.e.,
to al1 subnodes.

by R, W or A.
which It Is
Control (C)
It is passed

CREATEP; Privilege Block index

As privilege blocks are created, they are
numbers by the datacomputer. Block number
privilege blocks sequentially according
order. Block numbers can range from one
the total number of password blocks in the
Blocks can be explicitly ordered by the use
by entering 'Na' followed by the number tha
block is to have in the search sequence,
than zero* and not greater than the
privilege blocks currently existing for the
this index Is not in any sense a part of th
in the privilege block; it Is merely th
block in the password block list.

assigned Index
s are assigned to
to their search
to n, where n ts

search sequence,
r at CREATEP time
t the newly added
N must be greater
total number of
node. Note that

e data contained
e position of the

An example. If there were three blocks in the privilege
block list for a node (N0PE1),

1 U«AAA
2 U-CCC
3 U-DDD

and a new block were to be added between the first and
second existing blocks, i.e., so that the new block would
then occupy second position, we add a keyword, N»2, to a
CREATEP command:

CREATEP N0DE1,U-BBB,P«'Z00,,N«2;

which results in the following privilege block list:

1 U-AAA
2 U-BBB
3 U=CCC
I» U»DDD

If N had been omitted, the new block would have been added
at the end of the list. Note that the Indices of the two
blocks following the new one have been bumped by one.
Similarly, if any block Is deleted, the Indices of all the
following blocks are reduced by one.

I
f I

I
I

Chapter k: Security and Passwords Page 27

Looking At PrlvllRgp. Blocks; LLSI

In order to permit the user to list privilege block
information, the iPRIV (or «PRIVILEGE) option has been added
to the datalanguage LIST request. It looks like this:

LIST CCA.WALDO *PRIV (or)
LIST CCA.WALOO «PRIVILEGE

Passwords £aana£ h& JJL&tfid with JLtLfi AEBlv option (or in any
other way - so don't forget 'eml). Privilege block
Information is preceeded by tha index number of that block.
All other Information In the privilege block Is listed In a
format similar to that which might be found In a CRFATEP
command, e.g, either of tn-« LIST requests above might
generate the following output from the datacomputer:

(1),U*CCA.WALDO,H-LOCAL,S-ANY,G«CRAWL
(2),U«CCA.*.**,H«ANY,S»ANY,G-RWAL
(3),U**.**,H = 32,S=65I*36U,G=RL,D-WA

%PRIV may be used only when the controlling node has control
privileges.

Deleting PrivilPgP Blocks: DELETER

Privilege blocks may be deleted with DELETEP followed by the
Index number of the privilege block to be deleted,

DELETEP 3

The controlling node must have control privilege.

*m

Chapter k: Security and Passwords Page 28

I
I
8
I
I
I
I
I
I
I
I
I

/

Example

This example will create a node which will be the
controlling node for ' all other nodes at site CCA.
Presumably, access to this controlling node would be
restricted to very few persons at that site; 'super-users',
as it were. This could be done by means of a password. in
addition, anyone seeking control privileges for CCA might be
required to be logged-in to some other (access restricted)
node. The person with access to CCA would be responsible
for creating subnodes, perhaps one for each programmer
permitted to use the datacomputer. These individual
programmers could then create their own directory structures
(nodes, ports and files) in any manner they wish.

The site-node CCA is created
requests:

by the following series of

CREATE CCA;
CREATEP CCAfP-'HGNCHCG-CL;
CREATEP CCA,P-'FLUNKY',G-L;
LOGIN CCA('HONCHO');

The user is now logged In to CCA. He has control
privileges. Next he creates a series of programmer-nodes,
each with control privileges. Initially, two privilege
blocks are created for each programmer node. One requires a
password (known to, and probably specified by, the
individual programmer), and the other requires no password
and Is accessible to anyone logged In to CCA or any of Its
subnodes. However, persons who log In to a programmer node
without specifying a password are not given control
privileges and thus cannot modify or delete anything that
the programmer wishes to keep secure.

CREATE WALDO;

CREATE CLYDE;

CREATE DINK;

CREATEP WALD0,U-CCA,P-'TURKEY',6-CL;
CREATEP WALDO,U-CCA.**,G-L;
CREATEP CLYDE,U-CCA,P-*FETCH',G-CL;
CREATEP CLYDE,U-CCA.**,G«L;

CREATEP DINK,U-CCA,P-'PODUNK',R-CL;
CREATEP DINK,U-CCA.**,G-L;

After this is done, super-user checks the privilege blocks
he has created, first at his own node level:

LIST VTOP.CCAPHONCHO') »PRIVILEGE;

n

iM

Chapter U: Security and Passwords Page 29

and he receives a datacomputer
format:

printout In the following

(1)/U»*SH-ANY/S»ANY,G»CL
(2)/U»**/H«ANY/S«ANY/G-L

He next verifies that each of the programmer-node
blocks has been correctly entered/ e.g./

prlvtlege

LIST WALDO 2PRIV;

and the datacomputer replies:

(D/U-CCA/H-ANY/S-ANY/G-CL
(2)/U«CCA.**,H«ANY/S«ANY/G«L

At this point/ programmer Waldo tells super-user that he
would rather have 'donkey' as his control password rather
than 'turkey'. Since the user name (U-CCA) In Waldo's
control privilege block is more restrictive than the user
name (U«CCA.**) In the non-control privilege block/ the
first privilege block must be deleted and the new one added
in the same position (N»l):

DELETE WALDO 1;
CREATEP WALD0/U«CCA/P='D0NKEY'/G=CL/N-1;

We now have the following directory:

CCA
CCA.WALDO
CCA.CLYDE

/
CCA.DINK

Each of the programmer-nodes listed above has its own
password which is known to the person having access to that
node. In addition/ each Is required to login to CCA before
being able to acquire login and control privileges at »ts
own level. (Most or all of the programmers at CCA are given
only the password FLUNKY/ which does not give control
privileges. Thus/ they cannot create or delete any nodes at
the programmer-node level or look at the restricted data of
any other programmers.)

As soon as he is Informed that he may join the select
International hoard of datacomputer users, Waldo rushes to
his terminal to login:

LOGIN CCA('FLUNKY');
LOGIN WALD0('DONKEY');

/

I
■ I

I

I
I
I
I
I
I

Chapter k: Security and Passwords Page 30

Since he has logged in to his node using the password which
grants control privileges/ Waldo now creates BOOKFILE and
BOOKPORT and reads some data tnto BOOKFILE from a TENEX file
named TENEX-BOOK.FILE (note 8):

CREATE BOOKFILE FILE LIST(,1000),P-E0F
BOOK STRUCT

TITLE STR (,100),C«1
AUTHORS LIST(,5),C»1

AUTHOR STR (,50),C«1
PUBLISHER STR (,50),C«1

END;

CREATE BOOKPORT PORT LIST(,1000),P»E0F
BOOK STRUCT

TITLE STR (,100),P»EOR
AUTHORS LIST(,5),P-EOB

AUTHOR STR (,50),P«EOR
PUBLISHER STR (,50),P«E0R

END;

CLOSE I0PEN;

OPEN BOOKFILE WRITE;
OPEN BOOKPORT; CONNECT BOOKPORT 'TENEX-BOOK.Fl LE';
(NOTE 8)

BOOKFILE-BOOKPORT;

CLOSE IOPEN;

In order to permit others to look at his library file, Waldo
creates a couple of privilege blocks. The first permits
anyone at CCA to look at his book list, while denying htm
the right to change anything. The second Is for Waldo's
private use in changing the file:

CREATEP BOOKFILE,U»CCA.*,G»R,D«AW;
CREATEP
BOOKFILE,U-CCA.WALDO,P«'READ*MORE*EVERY*DAY',G-RWA;

/I
(8) A TENEX filename is used in this example for the purpose
of didactic clarity. In practice, this would usually be
done only by local datacomputer users (users located at the
site of the datacomputer). Remote users would have to
arrange for operator intervention, If connecting to a file
at the datacomputer site; or would specify the host name and
socket number from which the dato would be sent to the
datacomputer.

\

i

.*^i

1
!

I
I
1

Page 31

I
I
I
1

Chapter 5: Assignment and For-loops

Assignment- Involving Out»rmnst Containers

Transmission of data Is achieved with an assignment,
"the syntax of an assignment request that Involves two
outermost
containers Is

<ldent> - <ldent>;

where the <ident>s are the node names of oper, outermost
containers. The first ident In the statement Is that of the
receiving container; It must be open in either WRITE or
APPEND mode. The second ident is that of the transmitting
container; it can be open in any mode/ but it must have READ
privilege (see Chapter «O.lf the second ident Is a FILE, it
must contain some data.

The containers In the assignment may be either files or
ports. The various combinations are listed here, with a
description of the action of the assignment request In each
case.

Receiv'ng Transmitting Comment
container container

FILE FILE copies data from one FILE to another
within the datacomputer.

FILE PORT transmits data from some source
external to the datacomputer through
a PORT, into a FILE.

PORT FILE transmits data from a FILE, where It
Is being kept in the datacomputer,
through a PORT, to the outside world.

PORT PORT transmits data from one place to
another in the outside world, using
the datacomputer only as a channel
for transmission.

Ihfi Matching Rules

In any assignment statement such as

Chapter 5: Assignment and For-loops Page 32

X ■ Y;

(not only one involving two outermost containers) the two
operands/ X and Y, each has its own description. The
datacomputer will transform the data in Y to match the
description of X. In order for the datacomputer to be able
to do this/ the descriptions must match. This amounts to a
restriction that only similar objects can be assigned to
each other. Specifleally, for two assfgnr.ent-operands X and
Y to match:

I.A. X and Y must have the same tvoe: LIST/ STRUCT/ or
STR/ or BYTE,

AND
l.B. If X and Y are both LISTS/ then they must have

compatible sizes, or else X must be a PORT. The sizes are
compatible if the minimum size of X Is less than or equal to
the minimum of Y and the maximum size of X is greater than
or equal to the maximum stze of Y. This restriction leads
to cases where It is legal to assign Y to X but not to
assign X to Y> Note that If X and Y are outermost lists
with no list size specified/ the datacomputer supplies a
default size based on the space allocation, (use the LIST
request with the $DESC option to find out what the default
stze Is.)

AND
l.C. If X and Y are STRUCTs or LISTS/ then at least

one container Immediately enclosed In X must match/ and have
the same I dent as. one container immediately contained in Y/

OR

2. X must be a STRing and Y a constant. A constant is
an arbitrary string of characters. If they are enclosed by
single quote marks, then Is is an ASCII constant; a single
or double quote mark may be Included In such a string only
by prefixing it with another double quote. The constant
•D0N,MT' represents the string DON'T. (This rule Is
included here for completeness and will be discussed later.)

i

Padding MUSI Truncation

If two containers of type STR are used in an
assignment/ the matching rules do not require that their
sizes match. There are three cases:

1. The two sizes are equal. The string is assigned
wi thout change.

2. In the assignment X«Y/ the size of X Is greater
than that of Y. In this case/ It Is as if the string in Y
Is padded at the right-hand side to make it as long as X/
before assignment Is performed. If a fill character Is
specified In the description of X (i.e. If the parameter

;
i

/

Chapter 5: Assignment and For-loops Page 33

,F*'a' or . F-n Is used In the CREATE request)/ then that
character is ased. Otherwise« a blank is used for ASCII
strings and zero Is used for non-Ascll data.

3. The size of X Is less than that of Y. The string
contained In Y Is truncated at the right-hand side to be as
short as X, and the shortened string Is then assigned.

EjE »moles

Let us consider a few examples of the operation of the
rules. Suppose we have

CREATE M FILE LIST (25), P«EOF RECORD STR(IO);
CREATE N TEMP PORT LIST (25), P-EOF RECORD STR(IO) ;
M - N;

where M is a FILE in which data read from the PORT N Is to
be stored in the datacomputer. The assignment M ■ N Is
legal because M is in WRITE mode and both M and N are open
(opened by the CREATE statements). In addition, M and N
match: their subcontalners have the same ident (RECORD), and
matching descriptions. They satisfy rule l.A, since the
type is STR in both cases, and rules l.B and l.C do not
apply to containers of type STR.

The effect of this assignment Is to read strings of
length 10 from the PORT N, and to store them In the FILE M.
If an attempt Is made to store more than 25 strings In M,
the datacomputer will complain, as space was allocated for
only 25 strings. However, the 25 In the PORT description is
ignored.

A similar example, using the above description for M:

OPEN M APPEND;
CREATE 0 TEMP PORT LIST, P-EOF

RECORD STR (,15), P-EOR ;
M » 0;

Each STRing in 0 Is no more than 15 ASCII characters and
ends with an EOR. Each one will be padded or truncated to
10 characters since M has fixed-length rather than
punctuated STRings.

Now a more complex example.

CREATE FF FILE LIST (25), P-EOF
PERSON STRUCT

NAME STR (15)
ADDRESS STR (20)
CITY STR (10)
STATE STR (2)
ZIP STR (5)

*c
l\

■*^_

Chapter 5* Assignment and For-loops Page 3i»

SOCSECNO STR (10)
DEPENDENTS LIST (10) NAME STR (15)

END ;
.. requests that store data in the FILE FF
CREATE PP PORT LIST, P-EOF

PERSON STRUCT, P-EOR
NAME STR (15)
SCCSECNO STR (10)

END;
PP - FF ;

Here, the assignment PP - FF Is legal because: PP Is In
WRITE mode, both FF and PP are open, and their descriptions
match. Rule l.A: the type of both FF and PP Is LIST. Rule
l.B: PP is a PORT. Rule l.C: the subcontainer PERSON
immediately contained in FF has the same I dent as PP.PERSON,
and the two STRUCTs PERSON match. We determine this last
fact by going round once again with the matching rules.

Rule l.A: FF.PERSON and PP.PERSON have the same type,
STRUCT. Rule l.B does not apply to STRUCTs. Rule l.C: a
container immediately contained in FF.PERSON,
FF.PERSON.NAME, has the same ident (NAME) and a matching
description (STR (15)) as a container Immediately enclosed
by PP.PERSON, that is, PP.PERSON.NAME.

The effect of this assignment Is to create a new
instance of the struct PP.PERSON for each instance of PERSON
in FF, and add it to the LIST PP (that Is, output It through
the PORT PP). Each PERSON that Is output contains only a
selection of the data stored in FF: only the NAME and
SOCSECNO.

/

that Is, If
In READ mode,

FF
the

If the situation here were reversed,
were open In WRITE mode, and PP were
effect of the assignment

FF - PP;

would be to read data from the PORT PP and store it in the
FILE FF. However, only the NAME and SOCSECNO would be
available as data. The datacomputer handles this situation
by assigning strings consisting only of blanks (the default
since no fill character is specified In the description) to
the unmatched STRs In the output LIST-member. Thus,
ADDRESS, CITY, STATE, ZIP, and all 10 Instances of
DEPENDENTS.NAME would be blank In the FILE FF.

Very often, assignment at the level of outermost
containers is all that a user's program will require of the
datacomputer. An example would be a time-sharing monitor
system, which might want to store backup files, large files,
or Infrequently-usad files at the datacomputer rather than

Chapter 5: Assignment and For-loops Page 35

I
I
1
I
1

[
I
1
1
1
I
I

locally on (expensive) disc storage devices. Typically«
such a monitor system would Itself keep track of where
various files resided, and move them from place to place
over the ARPA network without burdening its users with the
details of exactly where their files were stored.

For such an application, a directory might be set up
with one node identifying the operating system that is doing
the file storage. Subordinate to this node might be the
•«sc idents of Its various time-sharing users whose files
might be stored on the datacomputer. These user nodes, in
turn, would have the file-names themselves as subordinate
nodes; as bottom-most nodes, these would also be outermost
containers and thus could store the data Itself. As a
diagram:

SYS|87

SAM SMITH JONES DIMFEE

FILE1 WORKFL DATA5 TEMPX

Figure 5-3. The directory for a sample application:
providing backup file storage for time-sharing users

A directory of this sort would initially be set up by
several CREATE requests; i.e.

CREATE SYS87"
* CREATE SYS87.SAM; CREATE £VS87.SMITH;
CREATE SYS87.JONES; etc.

Then, whenever a particular file was to be moved to the
datacomputer, a directory node for that file would be set up
by, for example«

CREATE SYS87.SMITH.FILEI FILE LiST (999)
A STR(80); 'ä

, -,

Chapter 5: Assignment and For-loops Page 36

(describing a file with less than 1000 80-character records)
and the file would be moved with an assignment stJtement
specifying a PORT with a matching description, and the FILE
FILE1, open In WRITE mode. Thus:

CREATE T TEMP PORT LIST A STRUO);
FILE1 - T;

I
I
I
I
I

Note that the two outermost containers FILE1 and T In
the assignment statement FILE1 * T match each other.

In order to recover the file from the datacomputer when
it is again needed, a PORT would be opened in WRITE mode
wi th

CREATE T TEMP PORT LIST A STR(80);
OPEN SYS87.SMITH.FILEI READ;

T - FILE1 ;

and the reverse assignment would t?ke place.

Selection Hi LIST Members

In the examples given above, there Is one output LIST
member for every input LIST member. Subsets of the Input
LIST member (I.e. the LIST on the right side of the ■) may
be specified by the use of WITH clause as an input-spec.
For example, consider the description

CREATE F FILE LIST, P-EOF
P STRUCT A STR(3) B STR(5) END;

and a matching PORT R. If only some of the P's on the LIST
F were to be output -- those with the string A equal to the
string '500', say -- one could specify

R « F WITH A EQ '500';

referring to the set of all members P of the LIST F that
have the given property. Note that A is understood to refer
to F.P.A; see the section on the context rules below for an
explanation. Quotes are used In the expresston '500' to
indicate tnat an ASCII string constant is intended.

In a WITH clause, the expressions one can use to choose
certain LIST-members, which are called Boolean expressions,
must involve comparison of a container that Is a STR or BYTE
with a constant (like '500' in trie example), using the
comparison operators

%s=^

iii

I
I
I
I
I
I

I
I
I
I
I

Chapter 5: Assignment and For-loops Page 37

EQ (equals)
NE (not equal to)
GT (greater than)
LT (less than)
GE (greater than or equal to)

and LE (less than or equal to).

Combinations of comparisons with

OR, AND, NOT, and ANY

are also possible. In precedence of operators, ANY (see
below) is highest; NOT is next in precedence, then AND,
which is in turn higher than OR; parentheses may be used to
affect the order of evaluation of these operators.

When using an input-spec, the name of the input
LIST-member may be used Instead of the name of the input
LIST. (This is for consistency with the syntax of the
FOR-loop, discussed below.) Thus,

R - F.P WITH A EQ '500';

is equivalent to the example above. Some sample input-specs
are thus:

F.P
F.P WITH A EQ '500'
F WITH A EQ '500' AND B GT 'AZZZZ*
F.P WITH (A EQ f500' AND NOT B GT 'MONDA') OR

(A EQ '600' AND B NE 'ZYYYY')

For ASCII containers, the operators GT, LT, etc. compare
the ASCII codes for the given strings and the given strings
must be of the specified length. This means that the
character blank is less than the digits, which in turn are
less than the letters. Consult a reference document for the
complete list of ASCII codes for all characters.

Also, while an input-spec like

F.P WITH A EQ '5'

is legal, it will not find any P's, since there are no A's
with only one character.

Retrievals Us lag Inner List ttemfaftm

Consider a description like

G FILE LIST, P-EOF
R STRUCT

i
/

Chapter 5: Assignment and For-loops Page 38

A STR (U)
B STR U)
W LIST (20)
WA STR (5)

END

Each R has 20 Wa's, since R contains an Inner list (W). An
Input-spec ltke

G.R WITH WA EQ 'ABCDE'

specifies all R's with at lease one Wa with value 'ABCDE*.
This may also be expressed as

G.R WITH ANY WA EQ 'ABCDE'

The former is called an Implicit AMI and tne latter, an
explicit MI.

The container WA can be used In boolean expressions
such as

G.R WlTH
ANY (WA EQ 'MARCH' AND WA EQ

'33103')
G.R WITH ANY

(WA EQ 'MARCH' OR WA EQ 'WORD ')
G.R WITH ANY WA EQ '123U5' AND B EQ 'CALI'

An ANY expression cannot be used within the object of
another ANY expression (nested ANY's).

In most cases, the explicit ANY is not required.
However, consider the description:

FAMILIES FILE LIST (100), P-EOF
FAMILY STRUCT

MOTHER STR (10)
FATHER STR (10)
CHILDREN LIST (10)

CHILD STRUCT
NAME STR (,10), C-l
AGE STR (2)

END
END;

The following expressions are not equivalent:

FAMILY WITH ANY (CHILD.NAME EQ 'ELLEN' AND
CHILD.AGE EQ '21')

FAMILY WITH CHILD.NAME EQ 'ELLEN' AND
CHILD.AGE EQ '21'.

Chapter 5; Assignment and For-loops Page 39

The latter case is Interpreted as:

FAMILY WITH ANY CHILD.NAME EQ 'ELLEN'
AND ANY CHILD.AGE EQ '21'

and refers to any FAMILY with an ELLEN who either Is 21 or
has a sibling who Is 21. The former only refers to FAMILYs
with a 21-year-old ELLEN.

In all of these examples, the inner list is
second-level list. If there Is a third level list,
members may not be used in a boolean expression,
example, given the description:

F FILE LIST R STRUCT
A STR(l)
L LIST (5)

LI LIST (5)
B STR (1)

the
its
For

END;

LI is a third-level list, and so B cannot
expression. However, A may still be
expression.

be used in a WITH
used in a WITH

/

in a FILE
fixed-size.

a boolean
or "l-l" as

Retrievals Using inverted Containers

A STR may be Inverted If It Is contained
which is a LIST and if the LIST members are
This is useful if the STR will be used often In
expression. Inversion Is specified by "I■D"
follows:

CREATE F FILE LIST (0,100), P-EOF
P STRUCT
A STR (3), l-D
Q LIST (10)

B STR (5), l-l
END;

The "I" of the above stands for Inversion, the ""0" is used
with members of outer lists, the ""I" with inner lists.

An inversion on the string A
efficiency of retrieving sets of ou
the contents of the string A -- that
of the P's that are defined by their
by content based on a particular strl
or not that string Is Inverted;
Improved by the existence of an inver

There Is a certain cost assoc
however. storage space must be al

greatly increases the
termost-LIST members by
is, retrieving subsets
values of A. Retrieval
ng 's possible whether
only the efficiency is
sion on the string,
lated with inversion,
located for a secondary

^fa mmk

/
. /

Chapter 5: Assignment and For-loops Page 40

data structure that the datacomputer uses for retrievals
based on Inverted strings. Updating a FILE takes longer
when it Is inverted/ since the secondary data structure must
be updated as well. Thus, the decision to tnvert a
particular string will depend on the relative cost of
increased retrieval time versus increased storage space, the
frequency of retrieval based on the particular string, and
other considerations. Appendix C contains further technical
details concerning Inversion.

Assignment uLLh £QR
Containers that are not outermost can also be used in

assignment statements. With FOR, assignments that retrieve
subsets of LIST-members may be performed, in contrast with
assignment of outermost containers. FOR causes some set of
datalanguage statements (usually assignment statements) to
be executed several times, once for each member of a given
set of LIST-members.

The syntax of the FOR-request is:

FOR <output-spec>, <lnput-spec> <body> END ;

The <input-spec> specifies a set of LIST-members to which
the operations specified in the <body> are to be applied. A
new member of the LIST specified by the <output-spec> is
created for each member of the input set processed. If the
output-spec is omitted, the FOR-request generates no output.

The Input-spec The Input-spec must specify a set of
LIST-members. The simplest kind of Input-spec Is just an
entire LIST -- i.e. the set of all the LIST-members.
However, the name of the LtST-member and not the LIST Itself
must be given. For example, If

CREATE F FILE LIST, P-EOF
P STRUCT A STR (3) B STR (5) END;

then F.P would be a legal input-spec, and would refer to the
set of all P's in the LIST F.

A subset of the LIST-members may be specified by the
use of a WITH clause In the Input-spec. The Input-spec on a
FOR-loop looks like the Input spec on the assignment of
outermost containers (discussed above), except that the
LIST-member must be named rather than the LIST. Thus

F.P WITH A EQ '500'

,-'

■ M—MÜ

Chapter 5: Assignment and For-loops Page kl

/

can be used in a FOR-loop, but not

F WITH A EQ '500'

The output-spec The output-spec is an optional
argument. Like the input-spec, it must be the name of a
UST-jnfiinbfcL' The LIST that contains the LIST-member
specified by the output-spec is often called the output
LIST. A new member is created and added to the output LIST
for each execution of the FOR-body.

A FOR-loop may be loose
between two LISTs. However/
of the input and output LISTs
the restrictions governing
FOR are largely the same as t
used in assignment:

1. Both LISTs must be
outermost containers.

2. If the output LIST I
it must be in WRITE or APPEND

3. If the input LIST is
the LIST that most immediatel
LIST of an enclosing FOR loop

k. Similarly, if the ou
LIST that most Immediately
LIST of an enclosing FOR,

ly thought of as assignment
the descriptions of the members
need not match. Otherwise,

the Input and output LISTs of a
hose governing outermost LISTs

open or contained in open

s an open outermost container,
mode.
not an outermost container,

y encloses it must be the input
•
tput LIST is not outermost, the
encloses it must be the output

The FOR-hodv The operations that are legal In a
FOR-body are assignment and another (nested) FOR. The
assignment may be of the form

<name> ■ <constant> ;

container where <name> refers to a
matching rule number 3), or

<name> ■ <name>;

that
assignment may

is a STR (see
be of the form

to transfer data from one container to another. If the
lattei >r is the case, then assignment is subject to

1. the restrictions specified In the matching rules

2. the usual restriction that data can be transmitted
a container only if it Is open in WRITE or APPEND mode,

above

Into
and

3. the restriction that assignment must occur between
objects, not sets üL objects.

k. In Version 0/10 of datalanguage, there are other
restrictions governing the containers that can be referenced
In the body of a FOR-loop. See Appendix E.

Chapter 5: Assignment and For-loops Page «»2

/

I

Let us look at a few examples, and describe their
operation in words. With F a FILE as above, and

CREATE Q FILE LIST
P STRUCT

A STR (3)
B STR (5)

END;

then

and

OPEN F WRITE;

F - Q;

FOR F.P, Q.P
F.P ■ Q.P ;

END;

have the same effect: a new member P is created and added to
the LIST F.

Likewi se

FOR F.P, Q.P WITH A EQ '500'
F.P « Q.P;

END;

HAS THE SAME EFFECT A3

F » Q.P WITH A EQ '500'

A final example: with FF.PERSON and PP.PERSON as given
in the example for the matching rules,

FOR PP.PERSON, FF.PERSON WITH STATE EQ 'Rl '
OR STATE EQ 'CT' OR STATE EQ 'MA'
OR STATE EQ 'VT' OR STATE EQ 'NH'
OR STATE EQ 'ME'

PP.PERSON.NAME - FF.PERSON.NAME;
END;

will have the effect of outputting through the PORT PP, the
NAMEs of all PERSONS in the FILE FF who live in New England;
i.e. with STATE equal to one of the New England states.

4M

Page hi

Chapter b: Using the Datacomputer

We proceed now from the basics of the language itself,
such as containers and assignment, to a broader view of how
datalanguage might be employee by a user's program. We will
discuss such matters as accessing the datacomputer,
transmitting data to and from datalanguage PORTs, and
various aids to the maintenance of data and FII.F and PORT
descriptions on the datacomputer.

/

Interacting with J±& QatflfiflBUmifiJ

Typically, datalanguage requests will be sent to the
datacomputer by a user program residing on some computer on
the ARPA network. All interaction between the user program
and the datacomputer takes place over the network.

Information transmission over the network takes place
along uni-directional paths. For a two-way conversation,
two such paths are needed, one for transmission in each
direction. The end of a transmission path is called a
«tnrkPt; a socket can be either a send (output) or receive
(input) socket. Obviously, a transmission path requires a
send socket at one end and a receive socket at the other. A
diagram of the sockets Involved in a two-way conversation
over the network appears below.

USER (HOST) COMPUTER DATACOMPUTER

USER OUTPUT
SOCKET

USER INPUT
SOCKET

DATALANGUAGE
INPUT SOCKET

DATALANGUAGE
OUTPUT SOCKET

Figure U-l. Network connections to the datacomputer

A host computer is identified on the network either by
a number or by an alphabetic name, like BBN-TENEX. A socket
within a given host is identified by a number; send sockets

am

Chapter 6: Using the Datacomputer Page kk

have odd numbers and receive sockets even ones. For a
connection to be opened, both hosts involved must request
that it be opened. Likewise/ after data transmission Is
complete, both hosts must close their ends of the
connection. The period of time during which network
connections are open between a user host and the
datacomputer is called a session.

In the user program's dialogue with the datacomputer,
the transmission in one direction consists largely of
datalanguage requests, while messages from the datacomputer
are sent in the other direction, to the user program. The
sockets at the datacomputer that are used for these purposes
are called the datalanguage input socket and the
datalanguage output socket. The terms datalanguage
input/output port are also used. These ports, like the
PORTs that a user can create with datalanguage CREATE
requests, are channels for the input and output of
information. However, the purpose of the datalanguage ports
is to receive datalanguage and transmit datacomputer
messages; the purpose of a user PORT Is to transmit or
receive data.

The protocol by which a user program can set up
datalanguage input and output sockets connected to Its own
output and input sockets is described in Appendix D of this
document.

Synchronization

Since use of the datacomputer typically involves the
interaction of two programs at opposite ends of a
communication network with a finite time delay, steps must
be taken to ensure that the programs remain In synchrony
with each other. If they do not, the user program might
blithely go on sending datalanguage when the datacomputer
expects data or might receive diagnostic messages when It
expects a list of directory node names.

To avoid such problems, the datacomputer generates a
variety of messages that keep the user program informed of
what is going on. The messages fall Into several
categories: there are error messages, which will be
discussed in a later section; informational messages, which
can safely be ignored or merely logged by a user program;
and synchronization messages, some of which at least must be
processed by the user program to ensure proper
communication. The first character of the message differs
from category to category, allowing the user program easily
to differentiate the various classes of message.

Chapter b: Using the Datacomputer Pane U5

I

Prefix

?, -, or

Type of Message

error message
informational message
synchronization message

Other special characters may be added as datacomputer
message-prefix characters in future versions. The letters,
digits, tab, and space will never be used as message
prefixes, however.

/

The datacomputer's messages all follow a common format,
which includes the special header character just described,
a letter and three digits that a program can use to Identify
the message, the date and time of the message's
transmission, and a variable-length string of text that can
be read by a human user. Specifically, the format is:

.X999 dd-mm-yy hhmm:ss (TAB) TEXT STRING (CR, LF)

where . represents the header character, X999 represents
the message identifier (for example, 1210), dd-mm-yy
represents the day, month, and year (for example, 25-09-73),
hhmm:ss represents the time on a 2«»-hour clock in hours,
minutes, and seconds, (TAB) represents a tab character, and
(CR, LF) represents the carriage return, line feed
characters that terminate the message. All alphabetic
characters in the message are capitalized. Note that the
message may be very long (too long to print on a 72-column
printer, for instance), so a user program that processes
datacomputer messages may have to format them to be
readable.

In this manual, only the Invariant parts of messages
will be displayed; that is, the header character, the
identifying letter and digits, and the message text.

To illustrate the use of synchronization messages In
pacing interaction with the datacomputer, consider these
two:

.1210 LAGC: READING NEW DL BUFFER

.J900 FCFINI: END OF SESSION

The first message, .1210, is sent by the datacomputer over
the datalanguage output socket, and hopefully received by
the user program over an input socket, whenever the
datacomputer is ready to accept datalanguage requests. The
user program will in general respond to this message by
transmitting a JJüfi of datalanguage. A line is some number
of characters (currently there is an upper limit of about
2500) terminated by either the character sequence carriage

Chapter 6: Using the Datacomputer Page i» 6

return, line feed (ASCII codes 15, 12 octal) or the single
character eol (37 octal). On a line nay be one datalanguage
request (terminated by a semicolon), several requests (each
terminated by a semicolon), or a portion of a request.

In the first two cases, when the datacomputer receives
the requests (and if they contain no errors) It will proceed
to execute them, (typically generating messages and/or
initiating data transfers as it does). Following execution,
it will again send the .1210 message signifying that It Is
again ready to receive datalanguage. In the third case, the
datacomputer will continue to send .1210 messages, prompting
the user program for lines of datalanguage, until a complete
request has bnen assembled; the request will then be
executed as described above.

The second message, .J900, Is sent by the datacomputer
at the end of a session. The user program may request that
the session end by sending the datacomputer a control-Z
(ASCII code 32 octal) in response to a .1210 message. The
datacomputer responds to control-Z by executing an end of
session procedure, which involves closing any open
containers, deleting TEMP PORTs, and sending the .J900
message. The user program may then close Its network
connections with the datacomputer.

Synchronization after an error Is
section entitled Error Messages below.

discussed in the

/

Transmitting Data through ih& Pntalaneuage Ports
Often, a user program will need to send data over the

network to be stored at the datacomputer, or to process data
that it receives from the datacomputer. If all of the data
is described as ASCII, then this may be done by using the
datalanguage Input or output port.

To reference data that he or she will transmit through
the datalanguage Input socket, the user need only open a
PORT and use it on the right-hand side of an assignment In
datalanguage. When the assignment is executed, data will be
accepted through the datalanguage input port and assigned to
whatever container appears on the left side of the request.

Similarly, to output data through the datalanguage
output socke«, so that it can be picked up by the user
program, all that is needed In datalanguage is a PORT used
on the left-hand side of an assignment. Any data assigned
to that container will be transmitted out through the
datalanguage output port over the network.

J

mm *m

Chapter 6: Using the Datacomputer Page 1*7

Of course/ performing this feat requires the use of
more synchronization messages. To treat the data-input case
first:

1231 OCPBO:
1251 OCPBC:

(DEFAULT)
(DEFAULT)

INPUT PORT OPENED
INPUT PORT CLOSED

After the user program has
request that references
djiacompjter will transmit
datalanguage output port,
data is now expected through
and the user program
transmission is terminated by
causes the datacomputer to send
that data transmission is
synchronization message will
datalanguage.

sent the datalanguage assignment
the open Input PORT, the
the .1231 message over the
The message signals that input
the datalanguage input port/
should send the data. Data
a control-Z character/ which

the .1251 message confirming
finished. The next

he .1210/ a request for more

The synchronization procedure governing data output
through the datalanguage output port is similar. The
messages are

. 1241 OCSOP: (DEFAULT) OUTPUT PORT OPENED

.1261 OCSCL: (DEFAULT) OUTPUT PORT CLOSED

When the assignment statement is executed which requests
that data be output through the datalanguage port/ the
datacomputer first sends .1241/ followed by the requested
data, followed in turn by .1261. The datacomputer does not
output a control-Z at the end of the data. The user program
can use these messages to separate out the data from all
other information.

Opening A Secondary Port

Instead of a datalanguage port, an additional network
connection .or secondary port can be used for transmitting
data. Non-ASCII data/ including an ASCII STR with a
preceding count or a non-ASCII delimiter/ must be
transmitted over a secondary port. The CONNECT request sets
up the secondary port.

The CONNECT request names an open PORT/ and gives a
host (that Is/ a computer on the network) and socket number
to which that PORT is to refer. As mentioned above/ if a
CONNECT request Is never executed for a PORT/ It will refer
to the socket from which the user program transmits
datalanguage (if It is a READ PORT) or the socket at which
the user program receives the datacomputer's messages (a
WRITE or APPEND PORT). The form of the CONNECT request is

Chapter 6: Using the Datacomputer Page kB

CONNECT <pathname> TO <address> ;

where <pathname> is the node name, comlete name (i.e.
starting with %top) or simple login name (i.e. starting
immediately subordinate to the login node) of an open PORT,
and <address> can have several forms. It can be one of

<socket-no> the decimal number of a socket at the
user's host computer.

<hiSt-no> <socket-no> where <host-no> is the decimal
number of a computer on the ARPA network

'<host-name>' <socket-no> where <host-name> is the host
computer's TENEX alphabetic name

<host-name> <socket-no>
computer
(such as

where <host-name> is the
s TENEX alphabetic name
'CCA')

host

OR '<local-file-designator>' This last form of <address>
does not refer to the network, but is
included here for completeness.
<local-file-designator> is a TENEX
file designator that refers to a file
at the datacomputer site.

I
I

A CONNECT may be executed any time the PORT is open,
but it does not actually establish the network connection.
Those connections are established, used, and then closed
again during the execution of an assignment statement In
datalanguage, and CONNECT merely sets up the socket address
to be used when the PORT is later referenced in an
assignment.

A DISCONNECT request may h? used to cause a CONNECTed
PORT to refer once again to the datalanguage input or output
port.

DISCONNECT <pathname> ;

Two CONNECT requests may be issued for the same PORT without
an intervening DISCONNECT.

Additional synchronization messages are generated at
the time a CONNECTed PORT is used in an assignment
statement. These messages are

.1230 OCPBO: OPENING INPUT PORT
;I 239 OCPBO: INPUT PORT OPENED
.1250 OCPBC: CLOSING INPUT SOCKET
.1240 0CP00: OPENING OUTPUT PORT

Chapter 6: Using the Dataconiputer Page U9

; 121*9 0CP00: OUTPUT PORT OPENED
.1260 OCPOC: CLOSING OUTPUT SOCKET

When a CONNECTed PORT is used on the right-hand side of an
assignment (that «s, in READ mode),, the .1230 message is
sent over the datalanguage output port. This signals the
user program that the datacomputer is attempting to open a
network connection to the host and socket specified by the
CONNECT request for the PORT. The user program should thus
open its end of the connection itself (if it is a connection
to a different socket on the user program's own host) or
ensure that the third host opens its end of the connection
at this time (if it is a connection to another host on the
network).

The ;i 239 message indicates that indeed the network
connection was opened correctly. After this message Is
received/ data ran be transmitted, terminated by closing the
network connection. Once the connection is closed, the
datacomputer sends .1250 over the datalanguage output port,
signaling the user program that use of the secondary network
connection is complete. The .1250 may precede or follow the
closing of the connection on the user's side.

The messages for outpu*. PORTs work similarly, with
.I2U0 signaling that the output network connection Is being
opened, ;!2*»9 that the connection is opened, and .1260 that
output is complete and the connection Is being closed.

If there are errors in the data, other messages will be
sent before the .1250 or .1260 message. This would be the
case, for example, if the data does not match the
description.

A user program can interrupt the datacomputer's
transmission of data; see Appendix D for details.

The form CONNECT <pathname> TO <local-fIle-deslgnator>;
may be useful to those with large amounts of data to send to
the datacomputer. In some cases, the shipment of magnetic
tapes by air-freight produces higher bit rates than sending
the data over the network; the magnetic tape may then be
addressed from datalanguage as a local file. Contact CCA
for information on this procedure.

Error Mftssagfis

Datacomputer error messages will in general be seen by
a human user, although they have header characters which
make them potentially processable by a smart user program.
Error messages fall into several categories, distinguished

Chapter 6: Using the Datacomputer Page 50

by their first character.

First Cha ;ter

?

Meaning

indicates a datacomputer or
system bug. A user program
should rarely see one of these.

Examples;
?U000 TRDN: NODE CHAIN SNAFU
7U000 DKWR: DISK I/O WRITE ERROR

indicates a user error —
typically bad datalanguage, data,
or i/o handling. A debugged user
program should rarely see one of
these.

Examples:
-U000 LPNM: FORARG NOT DIRECT LIST MEMBER
-121*6 OCSOP: CAN'T OPEN OUTPUT PORT (BAD CONNECT ARGS?)

♦ indi'cates a circumstantial error,
such as a file's being busy, or
an error which is due to current
datacomputer limitations.

Examples: +U000 0CD0P: CAN'T OPEN FILE (SOMEBODY ELSE UPDATING?:
♦L000 DHIN: DESCRIPTOR TOO LARGE

/ After the datacomputer generates one or morr error
message, it follows a special procedure to resynchronlze
itself with the user. This procedure Involves waiting for a
special character, control-L or form feed (ASCII Ik octal),
to be transmitted by the user. That is, after the error
message the datacomputer sends

.1220 LAEB: LOOKING FOR CONTROL-L

This is repeated for each line of input it receives on the
datalanguage input port until the user sends a control-L
character. Following receipt of a control-L, .1210 will
again be sent and datalanguage requests again processed.

More severe action must be taken following certain
system or ?-type errors. One of the following
synchronization messages may be generated:

Ml

I

Chapter 6: Using the Datacomputer Page 51

.J151 FCERRH: RESTARTING THE REQUEST HANDIER
, .J1U0 FCREIN: REINITIALIZING USER JOB
I .J910 FCERRH: CRASHING JOB

The .J151 message indicates that TEMP PORTs have been
I deleted; otherwise, the status of the session remains the

same (PORTs and FILEs will still be open, etc.). This
message will usually be followed by .1220, a request for
Icontrol-L.

The .J1U0 message is more serious. The user's job is
womrletely reinitialized, leaving his status the same as

I when the session was begun. This message will also be
followed by .1220.

The .J910 message indicates a condition so severe that
the datacomputer does not know how to recover. The user's
job is crashed and the datalanguage network connections
closed. That is, the session is forcibly ended.

If this happens, and also If the user's network
connections to the datacomputer are accidentally broken, the
datacomputer will do its best to close his open PORTs and
FILEs in an orderly manner. However, if the user was in the

(process of transmitting data into a FILE, the last few
thousand characters of data his program sent may have been
lost in transit and not incorporated into the FILE.

Not much in general can be said about handling ? or -
errors, except that a human user will have to read and
interpret the text of the error message in each case, and
(in the case of - errors) correct the datalanguage he Is
having his program send.

1+ errors, on the other hand, could be processed by a
user program. The most reasonable thing to do in many cases
is to wait five minutes and retry the datalanguage request
that caused the error. For example, a FILE which was busy
(i.e. in use by someone else) may be free by that time, so
the second rttempt to use it may be successful.

Messages beginning with +L are an exception to this, in
(that the appropriate time to wait may be several weeks

instead of minutes. Such messages indicate limitations of
the current datacomputer system, such as limitations imposed
by internal table sizes. A new version of the datacomputer
may remove many of these limitations. Realistically, this
means that +L messages are like - messages In that a program
probably could not handle them.

I

I
I
I
I

MB

Page 52

Appendix A: Summary of Datalanguage Syntax

The following is the complete BNF (Backus Normal Form)
specification of datalanguage syntax for version 0/10 of the
datacomputer.

Requests

<reouest>

Directory Requests

/

<request>
<request>
<request>
<request>
<request>
<request>
<request>
<request>
<request>
<request>
<request>

LOGIN <log in body> ;
CREATE <create body> ;
DELETE <delete body> ;
OPEN <open body> ;
CLOSE <close body> ;
CONNECT <connect body> ;
DISCONNECT <disconnect body>
MODE <mode body> ;
CREATEP <createp body> ;
DELETEP <deletep body> ;
LIST <1Tst boJy> ;

Data Transfer Requests

<request> ::= <direct assignment)
<request> ::* <for loop> ;

Appendix A: Summary of Datalanguage Syntax Page 53

Directory

Pathnames

<pathname>
<pathname>
<pathname>
<pathname>
<pathname>

<comp1ete pathname>
<simple complete pathname>
<log in pathname>
<simple login pathname)
<open node name>

<noae name> ::*- <ident!fier>
<node name> ::« <identifier> (<password string)
<password string> ::* <string constant)
<simple node name> ::■ <identlfler>

<complete pathname) ::
<comp1ete pathname) :

<complete pathname)

STOP . <node name)

<node name)

<simp1e complete pathname) ;:
%T0P . <simple node name)

<slmple complete pathname) :
<simple complete pathname) <simp1e node name)

<login pathname) ::a <node name)
<login pathname) s:3 <login pathname) . <node name)

<simple login pathname) ::a <s!mple node name)
<simple login pathname) ::s

<simple login pathname) . <s!mple node name)

<.open node name) ::= <simple node name)

<node pathname)
<node pathname)

<open pathname)
<open pathname)
<open pathname)

<complete pathname)
<log in pathname)

<simple complete pathname)
<simp1e login pathname)
<open node name)

Appendix A: Summary of Datalanguage Syntax Page 5k

Directory

Requests

<log in body>
<log in body>

<create body>
<create body>

<node pathname)
<create body> ::=
<create body> ::s

<node pathname)

<delete body>
<delete body>
<delete body>

<open body>
<open body>

<close body>
<close body>

UOP
<node pathname)

■ <slmp1e node n?'*e>

<simple node name)
<data description)

<data description)

**

<login pathname)
<login pathname) **

<node pathname)
<node pathname) <mode>

%OPEN
<open pathname)

<connect body) ::»
<open pathname) <tenex file specification)

<connect body) ::=
<open pathname) <network specification)

<tenex file specification) ::= <string constant)
<network specification) ::» <socket number)
<network specification) ::■

<host specification) <socket number)
<socket number) ::» <integer constant)
<host specification)
<host specification)
<host specification)

<disconnect body) :;

<integer constant)
= <identifler)
■ <string constant)

<open pathname)

<mode body)
<mode>
<mode>
<mode>
<mode>
<mode>

::= <open pathname) <mode)
READ
WRITE
APPEND
WRITE DEFER
APPEND DEFER

h (

Appendix A: Summary of Datalanguage Syntax Page 5b

<createp body> ::■ <node pathname)
<createp body> ::■

<node pathname) <prlv(1ege tuple specification)
<privilege tuple specification) ::■

<privliege tuple option)
<privilege tuple specification) ::■

<priv)1ege tuple specification)
<privi1ege tuple option)

<privilege tuple option)
<privilege tuple option)
<privilege tuple option)
<privilege tuple option)
<privilege tuple option)

, G * <grant privilege
<privilege tuple option)

z D ■ <deny privilege
<privilege tuple option)

, N ■ <privilege tuple

U - <user identity)
H » <host identity)
S ■ <socket Identity)
P ■ <password string)

1st)

st>

Index)
<user identity)
<user identity)
<user identity)
<user Identity)
<user identity)
<user identity)

<user node) .
<user node) ::«

node) ::=
node set)
node set)
Identity)
identity)
Identity)

identity)
Identity)

**

<user
<user
<user
<user

node)
node set)
node) . **
node set) **

**

<user
<user
<user
<host
<host
<host
<socket
<socket

<user node set)
<ldentlfier>
<user node) . identifier)
s *
s <user node set) . *
= ANY
= LOCAL
« <integer constant)
::» ANY
::» Onteger constant)

<grant privilege list) ::= <grant privilege)
<grant privilege list) ::■

<grant privilege listXgrant privilege)
<grant privilege, ::= C
<grant privilege) ::» L
<grant privilege) ::= R
<grant privilege) ::= W
<grant privilege) ::= A
<deny privilege list) ::«
<deny privilege list) ::»

<der.y privilege listXdeny privilege)
<deny privilege) ::= R
<deny privilege) ::» W
<deny prlvllege) : :■ A
<prlvllege tuple Index) ::■ <lnteger constant)

<deletep body) ::■
<node pathname) <prlvllege tuple Index)

<deny privilege)

MI

Appendix A: Summary of Datalanguage Syntax Page 56

1st
ist
ist
ist
ist
ist
ist
ist
ist
ist
ist
ist
ist
ist
ist
ist
ist
ist

body> ::>
body> ::>
node set>

<1
<1

node
node
node
node
node
node
node
opt
opt
opt
opt
opt
opt
opt
opt

set>
set>
set>
set>
set>
set>
set>

ion>
ion>
ion>
ion>
ion>
fon>
ion>
lon>

ist node
ist node
%T0P
IOPEN

set>
set> < 11 st optlon>

* **

* <open
* <node
* <node
■ <node
«NAME
^DESCRIPTION
tDESC
^SOURCE
^ALLOCATION
SALLOC
^PRIVILEGE
%PRIV

node name>
pathname>
pathname) «
pathname) , **

Appendix A: Summary of Datalanguage Syntax Page 57

Data Description

<datatype>
<datatype>
<datatype>

<compound datatype>
<simp1e datatype)
<string>

<compound datatype)
<compound datatype)

LIST
<structure>

<structure>
<structure> ::»

<simple datatype)
<simDle datatype)

STRUCTURE
STRUCT

BYTE
<integer>

< integer)
<Integer)

INTEGER
INT

<string) ::*
<string> ::=
<string type)
<string
<string
<stri ng
<strlng
<string
<stri ng

<string type)
<string type)
::- STRING

type) ::» STR
interpretation)
interpretation)
interpretation)
interpretation)
interpretation)

<string Interpretation)

ASCII
ASCI 18
BYTE
INT
INTEGER

J.

i

A

Appendix A: Summary of Datalanguage Syntax Page 58

<data description> si
<simple node name>

<outermost
<funct1on>
description)

<function>
<functlon>
<functlon>
<function>
<outermost
<outermost

FILE
PORT
TEMPORARY
TEMP PORT

description) :;
description)

PORT

» LIST <descrlptlon>

LIST <compound datatype options) <descrlption>
<outermost description)
<outermost description)
<outermost description)

<strlng>
<strlng) <string options)
description)

<description>
LIST <dimens

<descrlption>
LIST <dimens

<des
<description>

<structure>
description)

<structure)
<des

<description>
<descri ption)
<description)
<descri ption)
<description)
description)

<string> <dl
<descriptions>
<descriptions)

ion) description)
: :*
ion) <compound datatype options)
cription)
: : =
<descriptions> END
: : =
<compound datatype options)
criptions) END
:« BYTE
:« BYTE <simple datatype options)
:« <integer)
:= <Integer) <simple datatype options)
: ■ <string> <dimension>
:«

mansion) <string options)
<description>
<descriptions) <descriptlon)

• * !

k (

Appendix A: Summary of Datalanguage Syntax Page 59

<desc
<desc
<desc
<desc
<!nve
<lnve
<byte
<fill
<fill
<varl
<varl
<varl
<vari
<vari
<vari

ription option>
ription option>
ription option>
ription option>
rsion option>
rston optlon>
size option>

er optlon> ::«
er option>

F
F

able length option>
able length option>
able length option)
able length option)
able length option)
able length option)
D ■ '<nonquote character)'

<inverslon option)
<byte size option)
<filler option)
<varlable length option)
I » D
I « I
B ■ <integer constant)

» <integer constant)
B '<nonquote character)'

C • 1
P - EOF
P - F.OB
P - F.OR
D ■ <integer constant)

<compound datatype options) :J=
<compound datatype option)

<compound datatype options) ::=
<compound datatype options)

Irnmrtniinrl rlAt-atvnp onl
ion)

<simple datatype options) ::*
<simple datatype option)

<simple datatype options) ::■
<simp1e datatype options)

<simple datatype option)
<simple datatype option)
<simple datatype option)
<simp1e datatype option)

inversion option)
<byte size option)
<flller option)

<stri ng options)
<string options)
<stri ng option)
<string option)
<string option)
<string option)

<string option)
<strlng options) <strlng option)

<inverslon option)
<byte size option)
<fi Her option)
<varlable length option)

<dimension>
<dimension)
<dimenslon)

(<integer constant)

<lnteger constant))
, <integer constant))

<lnteger constant))

*m

Appendix A: Summary of Datalanguage Syntax Page 60

Data Transfer

<data reference>
<data reference>
<constant> ::»
<constant> ::■
<assignment> :::

<assignment> ::

::» <ldentlf1er>
::■ <data reference) . <identtfler>

<string constant)
<Integer constant)

> <data reference) ■ <data reference)
' <data reference) ■ <constant)

<direct assignment)
<dirtct assignment)
Omplicit for loop)

<for loop)
<for loop)
<for loop)
<for loop)

FOR <output)
<input) ::
<output) :
<for body)
<for body)
<for body)
<for body)
<assignment
<assignment

FOR

<assignment)
<impllett for loop)
assignment) <qualifier)

END FOR <input) <for body) END
FOR <lnput> <qualtfler) <for body) END
FOR <output> , <input) <for body) END

s

) , <input) <qualifier) <for body) END
<data reference)
<data reference)

<for loop)
<for loop) ;
assignment list)
<asslgnmert list) ;

<asslgnment) list)
list) signment list; ::*

<assignment list) ; <assignment>

<quali fier) WITH <boolean expression)

<re1ationa1 expression)
(<boolean expression))
NOT <boo1ean expression)
ANY <boolean expression)

<boolean expression)
<boo lean expression)
<boo lean expression)
<boo1ean expression)
<boolean expression)

<boo1ean expression) AND <boolean expression)
<boo lean expression) ::■

<boo lean expression) OR <boo lean expression)

Relational expression) ::■
<data reference) <comparison operator)

<data reference)
Relational expression) ::■

<data reference) <comparlson operator) <constant)
<comparison operator)
<comparison operator)
<comparison operator)
Comparison operator)
<comparison operator)
<comparison operator)

EQ
NE
GT
GE
LT
LE

*M

Appendix A: Summary of Oatalanguage Syntax Page 61

Lexical I terns

/

<lexical item>
<lexical item>
<lexical item>
<lexical item>

<identifier>
<integer constant)
<string constant)
<autonomous character)

<ldentlfler>
<identlfier>
<ident!fler>
<ldentlfier>
identifier)

<Integer constant)
<Integer constant)

<letter)
%
Odent'fler) Oetter)
<ldentifler> %
<ldentifier> <diglt)

::■ <digit)
::» <integer constant) <dlgit>

*<string constant body)'
::= <ronquote character)

<string constant) ::»
<istring constant body)
<string constant body) ::*

<string constant body) <nonquote character)

Appendix A: Summary of Datalanguage Syntax Page 62

Character Set

<letter>
<letter>

<letter>
<1etter>
<letter>

<letter>

<digit>
<diglt>

<digit> :

<nonqucte
<nonquote
<nonquote
<nonquote
<nonquote
<nonquote
<nonquote
<nonquote

A
B

* 1
■ a
« b

0
1

character)
character)
character)
character)
character)
character)
character)
character)

<letter)
%
<digit)
<autonomous character)

(space)
(horizontal tab — HT)

ii i

MM

<separator>
<separator>
<separator)
<eol> ::*
<eol> ::■
<carriage return)
<1ine feed) ::■

(space)
(horizontal tab -- HT)

<eol>
(end of line — octal 37)

<carrlage return) <llne feed)
:« (carriage return — CR)

(line feed — LF)

Appendix A: Summary of Datalanguage Syntax Page 63

I
I
1

<autonomous
<autonomous
<autonomous
<autonomous
<autonomous
<autonomous
<autonomous
<autonomous
<autonomous
<autonomous
autonomous
<autonomous
<autonomous
<autonomous
<autonomous
<autonomous
<autonomous
<autonomous
<autonomous
<autonomous
<autonomous
<autonomous
<autonomous
<autonomous
<autonomous
<autonomous
<autonomous
<autonomous
<autonomous

character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character
character

!
*
$
&
(
)
*

>
?

i
"B
»7
"E
M!

■"*

"6
I
"9

I
I
I
I
I
I

Appendix A: Summary of Datalanguage Syntax Page 6U

Notes

Character codes are 7 bit ASCII.

Separators are always permitted between lexical items,
except between grant privileges, between deny
privileges, and inside string constants.

Comments may be inserted wherever separators are
allowed. Comments begin with '/*' and end with '*/'
(e.g., /* THIS IS A COMMENT */).

<carriage return) and (line feed> may only appear
together in that order (as an <eol>). Otherwise they
are treated as control characters, which are rejected.

Page 65

Appendix B: Reserved Words '
i

AND
ANY
ASCII
ASCI I 8
BYTE
CLOSE
CONNtCT
CREATE
CREATEP
DELETE
DELETEP
DISCONNECT
END
EQ
FILE
FOR
GE
GT
INT
INTEGER
LE
LIST
LOGIN
LT
MODE
NE
NOT
OPEN
OR
PORT
STR
STRING
STRUCT
STRUCTURE
WITH
IOPEN
STOP

(

I
I

Page 66

Appendix C: Inversion: Technical Considerations

An inversion is a secondary data structure that
the datacomputer can use to improve Its efficiency in
retrieving data by content from a datalanguage FILE.
Specifically« an entry in the inversion is constructed
for every STR with the Inversion attribute. For each
data value which occurs for the STR, the Inverslor
contains pointers to all the records in the FILE for
which that STR contains that value.

For example/ if

CREATE PEOPLE FILE LIST
PERSON STRUCT

NAME STR (15)
SOCSECNO STR(9),I«D
SEX STR (1) /* 'M' OR 'FW/I-D
ZIP STR(5),I»D

END;

then the data structure for the Inversion on SEX
contains pointers to all Instances of PERSONS with SEX
equal to 'F', and similarly for 'M'. Thus, evaluation
of a simple FOR input-spec like

FOR ... / PEOPLE.PERSON WITH SEX EQ »M*

would be quick and simple, and would require only a
read of the inversion, not any reading of the FILE
PEOPLE itself.

An inversion is not only constructed automatically
by the datacomputer when the FILE is loaded with data,
but is automatically maintained (updated) whenever
information in the FILE is updated.

Unfortunately, even if an inversion for the
.appropriate STR exists, the datacomputer cannot always
use it for the evaluation of input-specs, and must
sometimes resort to time-consuming searches of the
FILE. In particular, the Inversion can be used only
when the STR is compared with a constant using the
operators £fl and AE. That is,

Appendix C: Inversion: Technical Considerations Page 67

PEOPLE.PERSON WITH ZIP EQ '02138' OR ZIP EQ
'02139'

OR ZIP EQ '021W OR ZIP EQ
'02141'

can be evaluated directly from the inversion. However,

PEOPLE.PERSON WITH ZIP GE '02138'
AND ZIP LE '021i»l'

while it still can be evaluated/ cannot take advantage
of the inversion and so would be much less efficient
datalanguage.

Furthermore/ when the STR Is a member of an Inner
LIST/ only the oehrator EQ can be evaluated using the
inversion. A sequential search is used for evaluating
NE.

Complex Boolean expressions/ those involving
several comparisons/ fall into three classes' those
with all comparisons evaluable from the inversion/
those containing no comparisons evaluable from the
inversion/ and those which mix the two kinds of
comparisons. The first two classes pose no problem;
the datacomputer will use the inversion to evaluate
expressions in the first category/ and not for
expressions in the second category.

For mixed expressions/ the datacomputer will use
the inversion as much as It can. For the present/ this
can be stated as follows: if the Boolean expression is
of the form

<expr> AND <expr> AND ...

(where <expr> is an arbitrary Boolean expression/ in
parentheses if it contains OR) then the datacomputer
will separate the <expr>s into those that can be
completely evaluated from the inversion ann those that
cannot/ and will process those that can use the
Inversion first. The <expr>s that cannot use the
inversion are evaluated by an exhaustive search of the
set of records selected by the earlier <expr>s.

For an example/ take the above FILE/ PEOPLE.
Suppose a list of all males with ZIP GT '02000' were
desired. ZIP is indeed inverted, but since the
operator GT Is involved/ the evaluation of that part of
the Boolean expression cannot use the inversion. As a
result/ in

Appendix C: Inversion: Technical Considerations Page 68

AND
FOR

SEX EQ
• • •
tMl 'M'

PEOPLE.PERSON WITH ZIP GT '02000

the datacomputer will first use the Inversion
the set of all PERSONS with SEX EQ 'M', and
smaller set of PERSONS would be searched
desired ZlPs.

to find
only this
for the

*

A more difficult example: consider the problem of
retrieving all the records for events that occurred
between 10:05 on the 25th and 15:07 of the 30th from a
FILE that Is Inverted on DAY but not on TIME. A
straightforward way to do this is

... WITH (DAY EQ '25' AND TIME GT '10:05')
OR (DAY EQ '26') OR (DAY EQ '27') OR

» * •

OR (DAY EQ '30' AND TIME LT '15:07')

but this is quite inefficient: the inversion cannot be
used at all, for this Boolean expression is mixed and
is not set up as a series of terms connected by AND.
The best way to express this condition is

DAY EQ
.. WITH
'30')

(DAY EQ '25' OR DAY EQ '26' OR OR

AND (DAY NE
AND (DAY

'25' OR
NE '30'

TIME GT
OR TIME

'10:05')
LT '15:07')

In this case, only records for the correct six days are
retrieved by the first term, so only they need to be
searched through for the evaluation of the second and
third terms.

Future versions of the datacomputer will
automatically optimize mixed Boolean expressions,
freeing the user from this task.

The computation of the space requirements for an
inversion is best left to the datacomputer's
operational staff at CCA, who should be contacted by
any user interested in setting up a data file with an
Inversion.

Page 69

Appendix D: Network Interaction with the Datacomputer

The procedure for establishing network connections
>ith the datacomputer is that documented in J. Postel,
official x&ln&i z LQS&SJL initial Connection Protocol/
NIC 7103, 15 June 1971. The following Is a simplified,
informal description of that procedure.

The datacomputer listens for connections on a
well-advertised socket, currently number 103 (octal) at
CCA, host number 37 (octal). This is an odd-numbered
or send socket. The user program wishing to use the
datacomputer will address this socket from a socket on
his own host computer -- say from socket number U. U
must, of course, be an even number or a receive socket.
The user program should read one 32-bit byte of
information over this connection and then immediately
close it (leaving socket CCA-103 free for other users).
This byte of information is a socket number at the
datacomputer — say socket P. D will be an even
number.

The last
connections,
They are

step is the
the permanent

opening of two network
datalanguage connections.

and
from D+l at CCA to U+2 at the user host
from U+3 at the user host to D at CCA.

Note that U+2 is even (since U is) and D+l is odd —
this is the datalanguage output socket. Also, U+3 is
odd, and D is even: the datalanguage input socket.
These connections will remain in effect until the end
of the datalanguage session.

The byte size of the permanent datalanguage
connections is 8 bits. The datacomputer sends, and
expects to receive, 7-bit ASCII characters
right-justified in 8-blt bytes.

Two special network control signals, INS and INR,
may be used to interrupt the datacomputer. INS, for
Interrupt the gender, may be sent at any time during
the processing of a request and stops data output from

Appendix D: Network Interaction with the DatacomputerPage 70

the current request. No error message or other
acknowledgement will be generated; the output simply
stops. INS might be useful to a program which receives
output fr■-'-■ the datacomputer and displays 11 to a human
operator sitting at a teletype; at the request of the
user, the program could send INS to stop an overly-long
printout.

INR, for .interrupt the jiecelver, performs all the
functions of INS. In addition, compilation or any
other processing that is under way when INR Is received
will be aborted, possibly generating an error message
and a request for control-L. INR thus requests a more
immediate halt than does INS.

"I

>/

Page 71

Appendix E: Implementation Restrictions

I
I
I

I
I
I
I

A number of datalanguage restrictions specific to
Version 0/10 are collected here for ready reference.
Note that some of these restrictions have been
mentioned in the body of this manual/ while others have
not.

1. There is a restriction on the containers
that can be referenced in the body of a FOR-loop.
Consider the following example:

CREATE FF FILE LIST
PERSON STRUCT

NAME STR (15)
ADDRESS STR (20)
CITY STR (10)
STATE STR (2)
ZIP STR (5)
SOCSECNO STR (10)
DEPENDENTS LIST (10)

NAME STR (15)
END;

CREATE PP PORT LIST
PERSON STRUCT

NAME STR (15)
SOCSECNO STR (15)

END;
| To output all the DEPENDENTS.NAMEs from the file FF/
I together wlth the SOCSECNO of the PERSON whose

DEPENDENTS they were,
IFOR PP.PERSON/FF.PERSON

NAME«NAME;
S0CSECNO-SOCSECN0;

END;
This example as written will work in datalanguage 0/10.
However/ if SOCSECNO occurred after DEPENDENTS in the
description of FF.PERSON/ the request would fall due to
a compiler restriction.

When an inner FOR-loop is processing a LIST which
occurs within a STRUCT/ references may be made in the
body of that FOR to objects which occur before that
LIST in the STRUCT/ but not after the LIST.

>

I

Appendix E: Implementation Restrictions Page 72

There are certain cases of assignment involving
inner LISTs which the compiler in Version 0/10 cannot
handle. For example/ given two structures of the
following format:

LI FILE LIST
, SI STRUCT

Al STR (8)
A2 LIST U)

B2 STR (6)
END;

I and
L2 PORT LI Si

SI STRUCT
Al STR (8)
A2 LIST U)

B2 STR (6)
END;

the following FOR-loop will not work:
FOR L1.S1,L2.S2

FOR A2.B2,A2.b2
Sl-Sl

END
END;

The A2 lists are in use by the inner FOR-loop (FOR
A2.B2,A2.B2) when the assignment S1»S1 is encountered.
The datacomputer expands Sl-Sl internally into:

A1»A1
FOR L1.S1.A2.B2,L2.S1.A2.B2

B2«B2
END;

This constitutes a second use of the A2 lists, which
cannot be handled.

I
I

2. In Version 0/10 of datalanguage, there is one
general restriction on sequences of nested FOR-loops,
which can be stated as follows:

Sequences of nested FOR-loops are restricted to be
a number (possibly 0) of FOR-loops without output
LISTs, followed by an arbitrary number, at least 1, of
FOR-loops with output LISTs.

For example,
FOR A FOR A FOR A

FOR B,C FOR B
(ASSIGNMENT)

(ASSIGNMENT) FOR C,D END;
END; (ASSIGNMENT)

END; END;
END;

END;
The first two examples are legal, whereas the third is
not.

Appendix E: Implementation Restrictions Page 73

3. A FOR-Ioop with no output LIST can contain
only one datalanguage statement as the FOR-body, not a
series of statements. Because of restriction 2, that
one statement must be a FOR.

This does not apply to a FOR with an output LIST.

k. The only comparison operators which can be
evaluated from an Inversion are EQ and NE. All other
comparison operators must be evaluated by a linear
search through a set of records. If the container
being compared is a member of an inner list/ only the
EQ comparison operator can be evaluated from an
inversion.

5. It is impossible to assign members of a LIST
without setting up a FOR-loop (either explicitly or
implicitly). For example, given the PORT Is:

CREATE LI PORT LIST (5)
SI STR (3);

The following assignment is illegal:
L1.S1='F00';

because it treats the five members of SI as If they
were a single data item.

6. Two outermost containers with the same name
may not be open at the same time. This is true even
though the containers may have different pathnames in
the directory.

7. If an output PORT Is punctuated, all
assignments before each punctuation character must be
completed before any assignments are made after the
punctuation character. That is, the datacomputer
cannot back up over punctuation in an output PORT. For
example, given an output PORT of the form:

PP PORT LIST
SI STRUCT

Al STR (3),P«E0R
A2 STR (3),P»E0R

END
assignments must be made In the same order as the STRs
appear in the STRUCT.

Al-'FOO';
A2*:BAR';

will take effect correctly, but
A2»'BAR';
A1«'F00';

wl11 not.

Because of the internal paging of the
datacomputer, STRUCTs containing long STRs (I.e.
greater than 2560 ASCII characters) have a similar
restriction, for example, the LIST

I
I
I
I
I
1
I
1
1
1
1
i
I

Appendix E: Implementation Restrictions Page 7U

FF FILE LIST
SI STRUCT

Al STR (10000)
A2 STR (10000)
A3 STR (10000)

END
may have assignments done only In the same order as
they appear in the STRUCT.

Page 75

/ ,

Appendix F: Differences between 0/9 and 0/10

The following Is a list of changes which/ when
perfc ied on 0/9 datalanguage, results In the
datalanguage for 0/10. The changes are purely user
specifiable (I.*, syntactic) features.

Add!ttons

Login
The LOGIN request
The login context
The ITOP context

Pri vileges
The CREATEP request
The DELETEP request
Passwords in pathnames

Simple pathnames (without passwords) for open nodes

Variable length
Data description option* -- P, P, C
Dimension -- (min,max)

The datatype BYTE

The implici t FOR loop

The boolean operator ANY

Defer mode — WRITE DEFER, APPEND DEFER

New data description options -- I»I, B, F

New LIST options -- ^ALLOCATION, ^PRIVILEGE

LIST U0P

LIST *

' Appendix F: Differences between 0/9 and 0/10 Page 75

CLOSE tOPEN

j String interpretations -- ASCII, ASCI I 8, BYTE

Synonyms — STRUCTURE, STRING

I
I
I
I
I
I
I
I
I
I
I
I
I

Modifications

** replaces %ALL

Elimination of the . between LIST'S nodes and option

%NAME is now an explicit LIST option

DELETE <pathname>.** is now explicit

MFO. 1-14 uiTioa - IEXOVE raoncTQi ma iiioai mm
"TO BE STORED IN A COOL DRY LOCATION"

/

MATERIAL INSPECTION
AND

RECEIVING REPORT
2. SHIPMENT NO.

CCA00003

3. DATE SHIPPED

9/20/74
». PRIME CONTRACTOR CODE

i.PROC. INSTRUMENT IDEN(CONTRACT)

MDA903-74-C-0225

(ORDER) NO. 6. INVOICE

NO.

DATE

7. PACE

1
OF

8.ACCEPTANCE POINT

D
4.B/L

TCN

6A046
Computer Corporation of America
575 Technology Square
Cambridge. Massachusetts 02139

5. DISCOUNT TERMS

CODE| S2202A

11.SHIPPED FROM (IIMhm lhanT) CODE]

Same as 9« above

FOB:

I3.SHIPPEDTO COOEl yyoQf"

Defense Advanced Research I
Architect Building
1^00 Wilson Boulevard
Attn: Dr. Craig Fields
Arlington, Virginia 22209

!B
rojects Agy.

IS.
ITEM
NO.

0002 AB

10. ADMINISTERED BY

Mr. J. McDonough
Defense Contract Administration

Services Region, Boston
666 Summer Street
Boston, Massachusetts 02210

COM] S2202A 12. PAYMENT WILL BE MADE BY

Disbursing Officer
Defense Contract Administration

Services Region, Boston
666 Summer Street
Boston, Massachusetts 02210

14.MARKED FOR CODE

Same as 13.

14. STOCK/PART NO. DESCRIPTION
(Indicate number of shipping containers • type of

 container - container number.)

Semi-Annual Technical Repcrt

QUANTITY
SHIP/REC'D»

PROCUREMENT QUALITY ASSURANCE

A. ORIGIN

jACCEPTANCEol listed items hos been mo.li
by me or unjer my supervision end they conform to controct
encept os noted heroin or on supporting documents.

DPOAD.

DATE

TYPED NAME
AND OFFICE

SIGNATURE OF AUTH GOVT REP

I . | . B.DESTINATION

| | PQA I I ACCEPTANCE o< listed items has been modo
by me or under my Supervision ond they conform to controct,
cjicept os noted herein or on supporting documents.

DATE

TYPED NAME
AND TITLE

SIGNATURE OF AUTH GOVT REP

18.
UNIT

]■).

UNIT PRICE
20.

AMOUNT

NSP

22. RECEIVER'» USE

Gjontitios shown in column 17 wore received in
opporcnt good eondi 1-n except os noted.

DATE CICUVED

TYPED NAME
AND OFFICE

SIGNATURE OF AUTH COV I Huf

• II quantify received by the Government is Ire seme o.
quantity shipped, indicole by (o/ } marri, if dif-
ferent, enter ocfi/o' quantity received below quantify
shipped ond encircle.

23.CONTRACTOR USE ONLY

